In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value.

Property Value
dbo:abstract
  • En física quàntica, un observable és tota propietat de l'estat d'un sistema que pot ser determinada ("observada") per alguna seqüència d'operacions físiques. Aquestes operacions poden incloure, per exemple, el sotmetre al sistema a diversos camps electromagnètics i la lectura de valors en un dispositiu. Per tot observable podem diferenciar una qualitat i una quantitat, i aquesta distinció resulta d'especial interès en la física quàntica. (ca)
  • En fiziko, aparte en kvantuma fiziko, sistemo estas videbla se la sistema stato povas esti difinita per iu vico de fizikaj operacioj. Ĉi tiuj operacioj povus engaĝi submeton de la sistemon al diversaj elektromagnetaj kampoj kaj eble lego de valoro for iu kalibro. En sistemoj regataj de klasika mekaniko, ĉiu eksperimente videbla valoro povas esti priskribita per reelo-valora funkcio sur aro de ĉiuj eblaj sistemaj statoj. En kvantuma fiziko, aliflanke, la rilato inter sistema stato kaj la valoro de videbla estas pli subtila, postulanta iun bazan lineara algebron por ekspliki. En la , statoj estas donitaj per ne-nulo vektoroj en hilberta spaco V (kie du vektoroj estas konsideritaj precizigi la saman staton, se kaj nur se, ili estas skalaraj obloj unu de la alia kaj observeblaĵoj estas donita per sur V. Tamen, kiel indikiĝos pli sube, ne ĉiu hermita operatoro korespondas al fizike signfa videblo. Por la okazo de sistemo de partikloj, la spaco V konsistas el funkcioj nomataj kiel ondaj funkcioj. En kvantummekaniko, mezuro de observeblaĵoj eksponas iu kvazaŭe misteraj fenomenoj. Ĉi tiu ofte kondukas al multaj miskomprenoj pri la naturo de kvantummekanika mem. La faktoj de la afero, tamen, estas ege pli ordinaraj. Aparte, se sistemo estas en stato priskribita per onda funkcio, la mezura procezo afektas la staton en , sed statistike antaŭvidebla maniero. Aparte, post mezuro estas aplikita, la stato priskribo per sola onda funkcio povas neniiĝi, estante anstataŭigita per de ondaj funkcioj. La nemalfarebla naturo de mezuraj operacioj en kvantuma fiziko estas iam nomita la mezura problemo kaj estas priskribita matematike per . Per la strukturo de kvantumaj operacioj, ĉi tiu priskribo estas matematike ekvivalento al tiu ofertita de relativa stato interpretado kie la originala sistemo estas estimita kiel subsistemo de pli granda sistemo kaj la stato de la originala sistemo estas donita per la de la stato de la pli granda sistemo. Fizike signfo de observebleco devas ankaŭ kontentigi kiuj klarigi observadoj plenumitan de malsamaj rigardantoj en malsamaj kadroj de referenco. Ĉi tiuj transformaj leĝoj estas de la stato-spaco, tio estas dissurĵeta transformoj kiu kontentigas iun matematikan propraĵon. Ĉe kvantummekaniko, la bezonataj aŭtomorfioj estas (aŭ kontraŭ-unuohava) linearaj transformoj de la hilberta spaco V. Sub aŭ speciala relativeco, la matematiko de kadroj de referenco estas aparte simpla, kaj fakte limigas konsiderinde la aron de fizike signfaj observeblaĵoj. (eo)
  • In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws which relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations which preserve certain mathematical properties of the space in question. (en)
  • Eine Observable (lateinisch observabilis ‚beobachtbar‘) ist in der Physik, insbesondere der Quantenphysik, der formale Name für eine Messgröße und den ihr zugeordneten Operator, die im Zustandsraum, einem Hilbertraum, wirken. Beispiele sind die Energie, die Ortskoordinaten, die Koordinaten des Impulses und die Komponenten des Spins eines Teilchens sowie die Pauli-Matrizen. (de)
  • En física, un observable es toda propiedad del estado de un sistema que puede ser determinada ("observada") por alguna secuencia de operaciones físicas. Estas operaciones pueden incluir, por ejemplo, el someter al sistema a diversos campos electromagnéticos y la lectura de valores en un dispositivo (medición). Para todo observable podemos diferenciar una cualidad y una cantidad, y esta distinción resulta de especial interés en la física cuántica. (es)
  • In fisica si definisce osservabile una qualsiasi grandezza che è in qualche modo misurabile direttamente tramite le operazioni e gli opportuni strumenti di misura, oppure indirettamente attraverso calcolo analitico. Il concetto, centrale nella pratica della scienza come rigorosamente definito dal metodo scientifico, si è evoluto fortemente col progredire della scienza moderna, diventando centro di acceso dibattito e attenta riflessione a livello epistemologico e ontologico nell'ambito della filosofia della scienza del XX secolo. (it)
  • Une observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur. Appliqué à un état quantique, l'opérateur permet de connaître tous les résultats possibles, et leur probabilité, d'une mesure d'une grandeur physique donnée sur un système quantique donné. (fr)
  • オブザーバブル(英: observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。 (ja)
  • 물리학에서, 관측가능량(觀測可能量, Observarble)은 위치나 운동량과 같이 측정될 수 있는 물리량이다. 고전역학에서 관측가능량은 모든 가능한 계의 상태에서 정의된 실수값의 함수이다. 에서는 양자 물리학에서 관측가능량은 연산자나 게이지같이, 일련의 물리적 조작으로 결정될 수 있는 계의 의 속성이다. 예를 들어, 전자기장에서 조작을 통해 상태가 결정되고, 값을 읽게 된다. 물리적으로 의미있는 관측가능량은 또한 반드시 변환법칙을 만족해야한다. 변환법칙은 다른 관측자가 다른 에서 수행한 측정과 연관되어있다.이러한 변환법칙은상태 공간의 자기동형사상으로, 문제가 되는 공간의 특정한 속성을 보존하는 일대일대응 이다. (ko)
  • Obserwabla – operator hermitowski (samosprzężony) definiowany w mechanice kwantowej, reprezentujący pewną mierzalną wielkość fizyczną. Przydatność operatorów hermitowskich wynika stąd, że ich wartości własne są liczbami rzeczywistymi i z tej racji mogą określać wyniki pomiarów fizycznych. Zgodnie z postulatami mechaniki kwantowej * każdej wielkości fizycznej odpowiada pewien operator hermitowski * wartości własne danego operatora są jedynymi możliwymi wartościami, jakie można otrzymać w pomiarze wielkości fizycznej, której odpowiada ten operator. Jeżeli operator ma dyskretny zbiór wartości własnych, to oznacza, że wartości mierzalne są dyskretne (skwantowane). Jeżeli dwa operatory (obserwable) nie komutują ze sobą, to odpowiadających im wielkości fizycznych nie da się zmierzyć jednocześnie. (pl)
  • Een observabele (van het Latijnse observabilis = waarneembaar) is in de natuurkunde, met name in de kwantummechanica, de formele naam voor een of voor een speciale klasse van operatoren, die op een abstracte Hilbertruimte inwerken. Voorbeelden van observabelen zijn de energie, de ruimtelijke coördinaten, de impulscoördinaten en de spincomponenten van deeltjes. Een belangrijk voorbeeld van een observabele is de Pauli-matrix. (nl)
  • En observabel är inom fysiken, och mer specifikt kvantmekaniken, en storhet hos ett kvantmekaniskt tillstånd som kan bestämmas genom en eller flera fysikaliska mätningar. Matematiskt representeras en observabel av en operator som verkar på kvanttillstånd . Väntevärdet för en observabel ges av . (sv)
  • Ква́нтовая наблюда́емая (наблюда́емая ква́нтовой систе́мы, иногда просто наблюда́емая) является линейным самосопряжённым оператором, действующим на сепарабельном (комплексном) гильбертовом пространстве чистых состояний квантовой системы. В интуитивном физическом понимании норма оператора наблюдаемой представляет собой наибольшую абсолютную величину измеряемого числового значения физической величины. Иногда вместо термина «наблюдаемая» используют «динамическая величина», «физическая величина».Однако температура и время являются физическими величинами, но не являются наблюдаемыми в квантовой механике. Тот факт, что квантовым наблюдаемым сопоставляются линейные операторы, ставит проблему связи этих математических объектов с экспериментальными данными, которые являются вещественными числами. На опыте измеряются вещественные числовые значения, соответствующие наблюдаемой в заданном состоянии. Важнейшими характеристиками распределения числовых значений на вещественной прямой являются среднее значение наблюдаемой и дисперсия наблюдаемой. Обычно постулируют, что возможные числовые значения квантовой наблюдаемой, которые могут быть измерены экспериментально, являются собственными значениями оператора этой наблюдаемой. Говорят, что наблюдаемая в состоянии имеет точное значение, если дисперсия равна нулю . Другое определение квантовой наблюдаемой: наблюдаемыми квантовой системы являются самосопряжённые элементы -алгебры. Использование структуры -алгебры позволяет сформулировать классическую механику аналогично квантовой. При этом для некоммутативных -алгебр, описывающих квантовые наблюдаемые, имеет место теорема Гельфанда — Наймарка: любая -алгебра может быть реализована алгеброй ограниченных операторов, действующих в некотором гильбертовом пространстве. Для коммутативных -алгебр, описывающих классические наблюдаемые, имеем следующую теорему: всякая коммутативная -алгебра изоморфна алгебре непрерывных функций, заданных на компактном множестве максимальных идеалов алгебры . В квантовой механике часто постулируется следующее утверждение. Каждой паре наблюдаемых и соответствует наблюдаемая , устанавливающая нижнюю грань одновременной (для одного и того же состояния) измеримости и , в том смысле, что , где — дисперсия наблюдаемой, равная . Это утверждение, называемое принципом неопределённости, выполняется автоматически, если и являются самосопряжёнными элементами -алгебры. При этом принцип неопределённости принимает свою обычную форму, где . Понятия квантовой наблюдаемой и квантового состояния являются дополнительными, дуальными.Эта дуальность связана с тем, что в опыте определяются лишь средние значения наблюдаемых, а в это понятие входит и понятие наблюдаемой, и понятие состояния. Если эволюция квантовой системы во времени полностью характеризуется её гамильтонианом, то уравнением эволюции наблюдаемой является уравнение Гейзенберга. Уравнение Гейзенберга описывает изменение квантовой наблюдаемой гамильтоновой системы с течением времени. В классической механике наблюдаемой называется вещественная гладкая функция, определённая на гладком вещественном многообразии, описывающем чистые состояния классической системы. Между классическими и квантовыми наблюдаемыми существует взаимосвязь. Обычно полагают, что задать процедуру квантования означает установить правило, согласно которому каждой наблюдаемой классической системы, то есть функции на гладком многообразии, ставится в соответствие некоторая квантовая наблюдаемая. В квантовой механике наблюдаемыми считаются операторы в гильбертовом пространстве. В качестве гильбертова пространства обычно выбирают комплексное бесконечномерное сепарабельное гильбертово пространство. Сама функция, соответствующая данному оператору, при этом называется символом оператора. (ru)
  • Спостережуваною у фізиці називають величину, яку можна виміряти, принаймні в принципі. Значення спостережуваної в класичній фізиці, якщо припустити досконалий вимірювальний прилад, задається дійсним числом. Квантовомеханічна система задається вектором стану в гільбертовому просторі. Спостережуваній відповідає , що діє в цьому просторі. Точне значення спостережувана має тільки в токому стані, що є власним станом її оператора. В загальному випадку можна визначити середнє значення спостережуваної за правилом: де — оператор спостережуваної величини, — вектор стану системи. Самоспряженість оператора спостережуваної забезпечує дійсніть її середнього значення. Експериментально середнє значення є результатом великого числа вимірювань. Одиничне конкретне вимірювання за правилом Борна може дати не довільне значення спостережуваної, а тільки таке, яке є власним значенням її оператора. При цьому вважається, що вимірювання призводить до колапсу вектора стану системи, в стан, який відповідає цьому значенню. Значення двох спостережуваних, оператори яких не комутують, визначити однозначно неможливо. Такі спостержувані називають несумісними. (uk)
  • 在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。 (zh)
dbo:wikiPageID
  • 294248 (xsd:integer)
dbo:wikiPageLength
  • 9470 (xsd:integer)
dbo:wikiPageRevisionID
  • 971604647 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En física quàntica, un observable és tota propietat de l'estat d'un sistema que pot ser determinada ("observada") per alguna seqüència d'operacions físiques. Aquestes operacions poden incloure, per exemple, el sotmetre al sistema a diversos camps electromagnètics i la lectura de valors en un dispositiu. Per tot observable podem diferenciar una qualitat i una quantitat, i aquesta distinció resulta d'especial interès en la física quàntica. (ca)
  • Eine Observable (lateinisch observabilis ‚beobachtbar‘) ist in der Physik, insbesondere der Quantenphysik, der formale Name für eine Messgröße und den ihr zugeordneten Operator, die im Zustandsraum, einem Hilbertraum, wirken. Beispiele sind die Energie, die Ortskoordinaten, die Koordinaten des Impulses und die Komponenten des Spins eines Teilchens sowie die Pauli-Matrizen. (de)
  • En física, un observable es toda propiedad del estado de un sistema que puede ser determinada ("observada") por alguna secuencia de operaciones físicas. Estas operaciones pueden incluir, por ejemplo, el someter al sistema a diversos campos electromagnéticos y la lectura de valores en un dispositivo (medición). Para todo observable podemos diferenciar una cualidad y una cantidad, y esta distinción resulta de especial interés en la física cuántica. (es)
  • In fisica si definisce osservabile una qualsiasi grandezza che è in qualche modo misurabile direttamente tramite le operazioni e gli opportuni strumenti di misura, oppure indirettamente attraverso calcolo analitico. Il concetto, centrale nella pratica della scienza come rigorosamente definito dal metodo scientifico, si è evoluto fortemente col progredire della scienza moderna, diventando centro di acceso dibattito e attenta riflessione a livello epistemologico e ontologico nell'ambito della filosofia della scienza del XX secolo. (it)
  • Une observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur. Appliqué à un état quantique, l'opérateur permet de connaître tous les résultats possibles, et leur probabilité, d'une mesure d'une grandeur physique donnée sur un système quantique donné. (fr)
  • オブザーバブル(英: observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。 (ja)
  • 물리학에서, 관측가능량(觀測可能量, Observarble)은 위치나 운동량과 같이 측정될 수 있는 물리량이다. 고전역학에서 관측가능량은 모든 가능한 계의 상태에서 정의된 실수값의 함수이다. 에서는 양자 물리학에서 관측가능량은 연산자나 게이지같이, 일련의 물리적 조작으로 결정될 수 있는 계의 의 속성이다. 예를 들어, 전자기장에서 조작을 통해 상태가 결정되고, 값을 읽게 된다. 물리적으로 의미있는 관측가능량은 또한 반드시 변환법칙을 만족해야한다. 변환법칙은 다른 관측자가 다른 에서 수행한 측정과 연관되어있다.이러한 변환법칙은상태 공간의 자기동형사상으로, 문제가 되는 공간의 특정한 속성을 보존하는 일대일대응 이다. (ko)
  • Een observabele (van het Latijnse observabilis = waarneembaar) is in de natuurkunde, met name in de kwantummechanica, de formele naam voor een of voor een speciale klasse van operatoren, die op een abstracte Hilbertruimte inwerken. Voorbeelden van observabelen zijn de energie, de ruimtelijke coördinaten, de impulscoördinaten en de spincomponenten van deeltjes. Een belangrijk voorbeeld van een observabele is de Pauli-matrix. (nl)
  • En observabel är inom fysiken, och mer specifikt kvantmekaniken, en storhet hos ett kvantmekaniskt tillstånd som kan bestämmas genom en eller flera fysikaliska mätningar. Matematiskt representeras en observabel av en operator som verkar på kvanttillstånd . Väntevärdet för en observabel ges av . (sv)
  • 在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。 (zh)
  • In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. (en)
  • En fiziko, aparte en kvantuma fiziko, sistemo estas videbla se la sistema stato povas esti difinita per iu vico de fizikaj operacioj. Ĉi tiuj operacioj povus engaĝi submeton de la sistemon al diversaj elektromagnetaj kampoj kaj eble lego de valoro for iu kalibro. En sistemoj regataj de klasika mekaniko, ĉiu eksperimente videbla valoro povas esti priskribita per reelo-valora funkcio sur aro de ĉiuj eblaj sistemaj statoj. En kvantuma fiziko, aliflanke, la rilato inter sistema stato kaj la valoro de videbla estas pli subtila, postulanta iun bazan lineara algebron por ekspliki. En la , statoj estas donitaj per ne-nulo vektoroj en hilberta spaco V (kie du vektoroj estas konsideritaj precizigi la saman staton, se kaj nur se, ili estas skalaraj obloj unu de la alia kaj observeblaĵoj estas donita (eo)
  • Obserwabla – operator hermitowski (samosprzężony) definiowany w mechanice kwantowej, reprezentujący pewną mierzalną wielkość fizyczną. Przydatność operatorów hermitowskich wynika stąd, że ich wartości własne są liczbami rzeczywistymi i z tej racji mogą określać wyniki pomiarów fizycznych. Zgodnie z postulatami mechaniki kwantowej * każdej wielkości fizycznej odpowiada pewien operator hermitowski * wartości własne danego operatora są jedynymi możliwymi wartościami, jakie można otrzymać w pomiarze wielkości fizycznej, której odpowiada ten operator. (pl)
  • Ква́нтовая наблюда́емая (наблюда́емая ква́нтовой систе́мы, иногда просто наблюда́емая) является линейным самосопряжённым оператором, действующим на сепарабельном (комплексном) гильбертовом пространстве чистых состояний квантовой системы. В интуитивном физическом понимании норма оператора наблюдаемой представляет собой наибольшую абсолютную величину измеряемого числового значения физической величины. Обычно постулируют, что возможные числовые значения квантовой наблюдаемой, которые могут быть измерены экспериментально, являются собственными значениями оператора этой наблюдаемой. (ru)
  • Спостережуваною у фізиці називають величину, яку можна виміряти, принаймні в принципі. Значення спостережуваної в класичній фізиці, якщо припустити досконалий вимірювальний прилад, задається дійсним числом. Квантовомеханічна система задається вектором стану в гільбертовому просторі. Спостережуваній відповідає , що діє в цьому просторі. Точне значення спостережувана має тільки в токому стані, що є власним станом її оператора. В загальному випадку можна визначити середнє значення спостережуваної за правилом: (uk)
rdfs:label
  • Observable (ca)
  • Observable (de)
  • Observable (en)
  • Videbla (fiziko) (eo)
  • Observable (es)
  • Observable (fr)
  • Osservabile (it)
  • オブザーバブル (ja)
  • 관측가능량 (ko)
  • Observabele (nl)
  • Obserwabla (pl)
  • Observável (pt)
  • Квантовая наблюдаемая (ru)
  • Спостережувана (uk)
  • Observabel (kvantmekanik) (sv)
  • 可觀察量 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of