rdfs:comment
| - En mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera ⟨φ, x⟩ := φ(x) pour x ∈ E et φ forme linéaire sur E. (fr)
- 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論におけるの特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 本項では弱位相の関連概念である*弱位相についても述べる。 (ja)
- Em análise funcional, a topologia fraca em espaços vetoriais topológicos (como espaços de Banach) é a menor topologia que faz com que os funcionais lineares contínuos na topologia original permaneçam contínuos nessa nova topologia. Tendo menos abertos, terá mais compactos, o que pode simplificar algumas operações (como aquelas que envolvam maximizações de funções). (pt)
- Die schwache Topologie ist eine spezielle Topologie und im Grenzgebiet der beiden mathematischen Teilgebiete der Topologie und Funktionalanalysis anzusiedeln. Sie wird auf normierten Räumen oder allgemeiner auf lokalkonvexen Hausdorff-Räumen definiert. (de)
- In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. (en)
- Słaba topologia – alternatywna (w stosunku do wyjściowej) topologia na danej przestrzeni liniowo-topologicznej, będąca uogólnieniem idei zbieżności po współrzędnych (w przypadku przestrzeni skończenie wymiarowych słaba topologia pokrywa się z wyjściową topologią). jeśli jest (mocną) topologią w to słabą topologię oznacza się zwykle symbolem Innym sposobem wprowadzenia tej topologii jest podanie bazy otoczeń zera. (pl)
|