About: Vector space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Idea105833840, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FVector_space

A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below, in . For specifying that the scalars are real or complex numbers, the terms real vector space and complex vector space are often used.

AttributesValues
rdf:type
rdfs:label
  • فضاء متجهي
  • Espai vectorial
  • Vektorový prostor
  • Vektorraum
  • Διανυσματικός χώρος
  • Vektora spaco
  • Espacio vectorial
  • Bektore espazio
  • Espace vectoriel
  • Spás veicteoireach
  • Vector space
  • Ruang vektor
  • Spazio vettoriale
  • ベクトル空間
  • 벡터 공간
  • Przestrzeń liniowa
  • Vectorruimte
  • Espaço vetorial
  • Векторное пространство
  • Linjärt rum
  • Векторний простір
  • 向量空间
rdfs:comment
  • Vektora spaco super korpo estas aro kun du operacioj: unu kaj unu .Oni notas + (adicio) por la interna operacio, kaj (skalara multipliko) por la ekstera operacio. La trio estas vektora spaco, se validas la sekvaj aksiomoj: * (E,+) estas komuta grupo * , kie 1 estas la neŭtra elemento de K * * * La elementoj de vektora spaco nomiĝas vektoroj kaj la elementoj de K nomiĝas skalaroj.
  • En álgebra abstracta, un espacio vectorial es una estructura algebraica creada a partir de un conjunto no vacío, una operación interna (llamada suma, definida para los elementos del conjunto) y una operación externa (llamada producto por un escalar, definida entre dicho conjunto y otro conjunto, con estructura de cuerpo), con 8 propiedades fundamentales. A los elementos de un espacio vectorial se les llama vectores y a los elementos del cuerpo, escalares.
  • Matematikan eta zehazkiago aljebra linealean bektore espazioa hutsa ez den multzo batetik sorturiko egitura aljebraiko bat da, egitura hau aipatutako multzo ez hutsa horren eta bektore batuketa batetik (barne operazioa) edota eskalar biderketa sortzen da.
  • Is cnuasach rudaí a dtugtar veicteoirí orthu é spás veicteoireach, rudaí is féidir a shuimiú agus a iolrú (a “scálú”) le huimhreacha a dtugtar scálaigh orthu. Is minic a shíltear gur fíor-uimhreacha iad scálaigh, ach chomh maith leo sin tá spáis veicteoireacha ann le hiolrú scálach trí uimhreacha casta nó trí uimhreacha cóimheasta. Caithfidh suimiú scálach agus iolrú scálach riachtanais áirithe a chomhlíonadh a dtugtar “aicsímí” (buntairiscintí a nglactar leis go bhfuil siad fíor) orthu.
  • En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble muni d'une structure permettant d'effectuer des combinaisons linéaires. Étant donné un corps K, un espace vectoriel E sur K est un groupe commutatif (dont la loi est notée +) muni d'une action « compatible » de K (au sens de la définition ci-dessous). Les éléments de E sont appelés vecteurs, et les éléments de K des scalaires. Pour une introduction au concept de vecteur, voir l'article « Vecteur ».
  • 벡터 공간(vector空間, 영어: vector space, 문화어: 벡토르공간, 선형공간)은 선형대수학에서 원소를 서로 더하거나 주어진 배수로 늘이거나 줄일 수 있는 공간이다. 체에 대한, 가군의 특수한 경우다. 벡터 공간의 원소를 벡터(영어: vector, 문화어: 벡토르)라고 하며, 이는 직관적으로 방향 및 길이의 비가 정의된 대상을 나타낸다. 그러나 노름이 주어지지 않은 일반적인 벡터 공간에서는 벡터의 길이 자체는 정의되지 않는다.
  • 向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。
  • الفضاء الاتجاهي أو الفضاء المتجهي أو الفضاء الشعاعي (بالإنجليزية: Vector space) هو كائن أساسي في دراسة الجبر الخطي. هو مجموعة من عدة متجهات والتي هي كائنات يمكن إضافتها مع بعضها البعض وضربها بأعداد، التي يطلق عليها كميات قياسية في هذا السياق. غالبا ما تكون الكميات القياسيات أعدادا حقيقية، ولكن بالإمكان اختيار فضاءات اتجاهية مع كميات قياسية من أعداد مركبة أو أعداد نسبية أو حتى حقول عامة. عمليتا جمع المتجهات وضرب متجهة ما في كمية قياسية ينبغي لهما أن تحققا مجموعة من المتطلبات تدعى موضوعات جاءت أسفله. فضاء المتجهات الإقليدية هو مثال على الفضاءات المتجهية حيث يمكن أن تمثلن كميات فيزيائية مختلفة كالقوى وغيرها.
  • Un espai vectorial és, en matemàtiques, i més concretament en àlgebra lineal, una estructura algebraica formada per un conjunt de vectors. Els vectors són objectes que es poden sumar entre ells i es poden multiplicar per un nombre, que en aquest context s'anomena escalar, i "aplicar-los un factor d'escala". Sovint es considera que els escalars són nombres reals, però també es poden definir espais vectorials amb la multiplicació escalar per nombres complexos, nombres racionals o, fins i tot, cossos més generals en lloc de fer servir cossos de nombres. Les operacions d'addició vectorial i multiplicació escalar han de satisfer certs requisits, anomenats axiomes, que es descriuen a la secció d'aquest article on es dóna la d'espai vectorial.
  • Vektorový prostor (též lineární prostor, anglicky vector space) je ústředním objektem studia lineární algebry, v jehož rámci jsou definovány všechny ostatní důležité pojmy této disciplíny. V jistém smyslu můžeme vektorový prostor chápat jako zobecnění množiny reálných, potažmo komplexních, čísel. Podobně jako v těchto množinách je i ve vektorovém prostoru definována operace sčítání a násobení s jistými přirozenými omezeními jako asociativita apod. Prvek vektorového prostoru se nazývá vektor (angl. vector). Na vektorovém prostoru je důležité, že má lineární matematickou strukturu, tzn. dva vektory lze sečíst, přičemž tento součet je opět prvkem vektorového prostoru, a totéž platí i pro násobek vektoru. S konceptem vektorového prostoru se lze setkat v nejrůznějších odvětvích matematiky i fyz
  • Ein Vektorraum oder linearer Raum ist eine algebraische Struktur, die in vielen Teilgebieten der Mathematik verwendet wird. Vektorräume bilden den zentralen Untersuchungsgegenstand der linearen Algebra. Die Elemente eines Vektorraums heißen Vektoren. Sie können addiert oder mit Skalaren (Zahlen) multipliziert werden, das Ergebnis ist wieder ein Vektor desselben Vektorraums. Entstanden ist der Begriff, indem diese Eigenschaften ausgehend von Vektoren des euklidischen Raumes abstrahiert wurden, sodass sie dann auf abstraktere Objekte wie Funktionen oder Matrizen übertragbar sind.
  • Ο διανυσματικός χώρος είναι μια η οποία αποτελείται από μια συλλογή στοιχείων που ονομάζονται διανύσματα. Τα διανύσματα μπορούν να προστίθενται και να πολλαπλασιάζονται (κλιμακωτά) με αριθμούς, οι οποίοι στο κείμενο θα ονομάζονται ως βαθμωτά. Τα βαθμωτά είναι συνήθως πραγματικοί αριθμοί, αλλά υπάρχουν και διανυσματικοί χώροι με βαθμωτό πολλαπλασιασμό μιγαδικών αριθμών, ρητών αριθμών ή γενικά οποιουδήποτε σώματος. Οι πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού πρέπει να πληρούν κάποιες προϋποθέσεις, οι οποίες καλούνται αξιώματα, παρατίθενται . Ένα παράδειγμα διανυσματικού χώρου είναι αυτός των ευκλείδειων διανυσμάτων, τα οποία μπορούν να χρησιμοποιηθούν για να αναπαραστήσουν φυσικές ποσότητες όπως είναι οι δυνάμεις• οποιαδήποτε δυο διανύσματα δυνάμεων (ίδιου τύπου) μπορούν να πρ
  • A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below, in . For specifying that the scalars are real or complex numbers, the terms real vector space and complex vector space are often used.
  • Ruang vektor adalah struktur matematika yang dibentuk oleh sekumpulan vektor, yaitu objek yang dapat dan dikalikan dengan suatu bilangan, yang dinamakan skalar. Skalar sering adalah bilangan riil, tetapi kita juga dapat merumuskan ruang vektor dengan perkalian skalar dengan bilangan kompleks, bilangan rasional, atau bahkan medan. Operasi penjumlahan dan perkalian vektor mesti memenuhi persyaratan tertentu yang dinamakan aksioma. Contoh ruang vektor adalah yang sering digunakan untuk melambangkan besaran fisika seperti gaya. Dua gaya dengan jenis sama dapat dijumlahkan untuk menghasilkan gaya ketiga, dan perkalian vektor gaya dengan bilangan riil adalah vektor gaya lain. Vektor yang melambangkan perpindahan pada bidang atau pada ruang tiga dimensi juga membentuk ruang vektor.
  • 数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、英: vector space)、または、線型空間(せんけいくうかん、英: linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルにはが定義され、またスカラーと呼ばれる数による(スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件()を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。
  • In matematica, uno spazio vettoriale, anche detto spazio lineare, è una struttura algebrica composta da: * un campo, i cui elementi sono detti scalari; * un insieme, i cui elementi sono detti vettori; * due operazioni binarie, dette somma e moltiplicazione per scalare, caratterizzate da determinate proprietà. Strutture algebriche preliminari agli spazi vettoriali sono quelle di gruppo, anello e campo. Vi sono poi numerose strutture matematiche che generalizzano e arricchiscono quella di spazio vettoriale; alcune sono ricordate nell'ultima parte di questo articolo.
  • Een vectorruimte (ook lineaire ruimte genoemd) is een centraal begrip in de lineaire algebra. Een vectorruimte is een wiskundige structuur, die wordt gevormd door een verzameling vectoren: wiskundig objecten die kunnen worden opgeteld door middel van vectoroptelling en die kunnen worden vermenigvuldigd ("geschaald") door getallen, die in deze context scalairen worden genoemd. Vaak zijn de scalairen reële getallen, maar men kan ook vectorruimten beschouwen waarin de scalairen complexe getallen, rationale getallen of heel algemeen elementen van een willekeurig veld (Belgisch) of lichaam (Nederlands) zijn. De operaties van vectoroptelling en scalaire vermenigvuldiging moeten aan bepaalde eisen voldoen, de zogenaamde axioma's (zie onder voor een lijst). Een voorbeeld van een vectorruimte is de
  • Przestrzeń liniowa (przestrzeń wektorowa) – zbiór elementów (nazywanych wektorami), w którym określono dwa działania: * dodawanie wektorów, * skalowanie wektorów, czyli mnożenie wektorów przez liczby (nazywane skalarami) z ustalonego ciała, przy czym działania te muszą spełniać poniżej wymienione aksjomaty (patrz Definicja). Naturalnymi przykładami przestrzeni liniowych są dwu- i trójwymiarowe przestrzenie euklidesowe:
  • Um espaço vetorial (também chamado de espaço linear) é uma coleção de objetos chamada vetores, que podem ser somados um a outro e multiplicados ("escalonados") por números, denominados escalares. Os números reais são escalares frequentemente utilizados, mas também existem espaços vetoriais com multiplicação por números complexos, números racionais; em geral, por qualquer corpo. As operações de adição de vetores e multiplicação por escalar precisam satisfazer certas propriedades, denominadas axiomas (listados abaixo, em ). Para explicitar se os escalares são números reais ou complexo, os termos espaço vetorial real e espaço vetorial complexo são frequentemente utilizados.
  • Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом следует отметить, что вектор, как элемент векторного пространства, не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или
  • Ett linjärt rum, även kallat vektorrum, är en mängd med en linjär struktur. Två element i mängden kan sammanfogas (adderas) till ett nytt element, som även det tillhör mängden: Ett element i mängden kan "multipliceras" med ett element från kroppen . Då bildas ett nytt element som även det tillhör mängden: "Sammanfogningen" () och "multiplikationen" () har samma grundläggande egenskaper som vanlig addition och multiplikation.
  • Ве́кторний (ліні́йний) про́стір — основне поняття лінійної алгебри, узагальнення множини всіх векторів на площині чи в просторі з операціями додавання векторів та множення вектора на скаляр. Прикладом векторного простору є Евклідові вектори. Вони відображають фізичні величини такі як сили: будь-які дві сили (однакової природи) можна додавати між собою і отримати в результаті третю, а множення вектору сили на дійсний множник дає інший вектор сили. Аналогічним чином, але в більш геометричному сенсі, вектори що відображають переміщення в площині або у тривимірному просторі також утворюють векторні простори. Вектори у векторному просторі не обов'язково повинні бути об'єктами у вигляді стрілок, як їх часто наведено в прикладах: вектори слід розглядати як абстрактні математичні об'єкти із певним
differentFrom
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software