About: Finite field     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Location100027167, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFinite_field

In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

AttributesValues
rdf:type
rdfs:label
  • حقل منته
  • Cos finit
  • Konečné těleso
  • Endlicher Körper
  • Πεπερασμένο σώμα
  • Finite field
  • Cuerpo finito
  • Corps fini
  • Campo finito
  • 有限体
  • 유한체
  • Eindig lichaam (Ned) / Eindig veld (Be)
  • Ciało skończone
  • Corpo finito
  • Конечное поле
  • Поле Галуа
  • Ändlig kropp
  • 有限域
rdfs:comment
  • في الجبر التجريدي، حقل منته (بالإنجليزية: Finite fields) أو حقل غالوا نسبة للعالم الفرنسي إيفاريست جالوا هو حقل يحتوي على عدد منته من العناصر. الحقول المنتهية مهمة جدا في نظرية الأعداد والهندسة الجبرية ونظرية غالوا والتشفير ونظرية الترميز غيرها. تُصنف الحقول المنتهية حسب عدد عناصرها. تظهر الحقول المنتهية في سلسلة كما يلي: الحلقات التبادلية ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ الحقول ⊃ الحقول المنتهية.
  • Konečné těleso (též Galoisovo těleso na počest Évarista Galoise, obvykle značeno ) je v matematice, přesněji v abstraktní algebře, označení pro takové těleso, které má konečný počet prvků.
  • Στα μαθηματικά, ένα σώμα καλείται πεπερασμένο αν το πλήθος των στοιχείων του είναι πεπερασμένο. Ένα πεπερασμένο σώμα λέγεται αλλιώς και σώμα Γκαλουά προς τιμήν του Γάλλου μαθηματικού Γκαλουά (Évariste Galois). Τα πεπερασμένα σώματα είναι σημαντικά στην , την , την Κρυπτογραφία και τη .
  • En álgebra abstracta, un cuerpo finito, campo finito o campo de Galois (llamado así por Évariste Galois)​ es un cuerpo definido sobre un conjunto finito de elementos. Los cuerpos finitos son importantes en teoría de números, geometría algebraica, teoría de Galois, y criptografía. Todos los cuerpos finitos tienen un número de elementos q = pn, para algún número primo p y algún entero positivo n. Para cada cardinalidad q así definida hay una y solo una manera posible de definir un cuerpo finito, por lo que todos los cuerpos finitos del mismo orden son isomorfos entre sí.​
  • In matematica, in particolare in algebra, un campo finito (detto a volte anche campo di Galois) è un campo che contiene un numero finito di elementi. I campi finiti sono importanti in teoria dei numeri, geometria algebrica, teoria di Galois, in crittografia e in teoria dei codici. I campi finiti sono completamente classificati.
  • 有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 「有限斜体は可換体である」 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。
  • 체론에서, 유한체(有限體, 영어: finite field) 또는 갈루아 체(영어: Galois field)는 유한개의 원소를 가지는 체이다.
  • Em matemática e, em especial, na teoria dos corpos, um corpo finito é um corpo em que o conjunto dos elementos é finito. Corpos finitos também são chamados corpos de Galois em honra ao matemático francês Évariste Galois.
  • I abstrakt algebra är en ändlig kropp en kropp med ändligt många element. Teorin om ändliga kroppar utarbetades av Carl Friedrich Gauss (1777-1855) och Évariste Galois (1811-1832), därav benämns ändliga kroppar ibland för Galoiskroppar. Ändliga kroppar har applikationer i kombinatorik, kryptologi, talteori och kodningsteori (där de bland annat används för att konstruera felrättande koder, till exempel .)
  • 在数学中,有限域(英語:finite field)或伽罗瓦域(英語:Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 p 为素数时,整数对 p 取模。 有限域的元素个数称为它的阶。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。
  • En matemàtiques i més precisament en la branca de la teoria de Galois, un cos finit, anomenat també cos de Galois és un cos el cardinal del qual és finit (té un nombre finit d'elements). Tret d'isomorfismes, tot cos finit queda completament determinat pel seu cardinal que és sempre de la forma pn, una potència d'un nombre primer. Aquest nombre primer no és altre que la seva característica (el nombre més petit de vegades que s'ha de sumar l'element neutre de la multiplicació per a obtenir l'element neutre de la suma) i el cos es presenta com l'única extensió finita del cos primitiu Z/p de dimensió n.
  • In der Algebra, einem Teilgebiet der Mathematik, ist ein endlicher Körper oder Galoiskörper (nach Évariste Galois) ein Körper mit einer endlichen Anzahl von Elementen, d. h. eine endliche Menge, auf der zwei als Addition und Multiplikation verstandene Grundoperationen definiert sind, sodass die Menge zusammen mit diesen Operationen alle Anforderungen eines Körpers erfüllt. E. H. Moore prägte wohl 1893 den englischen Begriff Galois field zu Ehren von Évariste Galois, der bereits mit gewissen imaginären Zahlen modulo gerechnet hat.
  • In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.
  • En mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
  • Een eindig lichaam (Nederlandse term) of eindig veld (Belgische term), Galoislichaam, Galoisruimte, of Galoisveld (vernoemd naar Évariste Galois) is een lichaam /veld met een eindig aantal elementen. Dit aantal, de orde van het lichaam genoemd, kan alleen maar een macht van een priemgetal zijn. Omgekeerd is er voor ieder dergelijk aantal een eindig lichaam (op isomorfie na eenduidig).
  • Ciało skończone lub ciało Galois – ciało skończonego rzędu, tj. o skończonej liczbie elementów; druga z nazw pochodzi od nazwiska francuskiego matematyka Évariste’a Galois, który znacząco przyczynił się do rozwoju badań nad ciałami skończonymi oraz wskazał ich zastosowanie w tzw. teorii Galois dającej m.in. definitywną odpowiedź na pytania o rozstrzygnięcie możliwości wykonania klasycznych konstrukcji w geometrii euklidesowej czy też zgrabnie uzasadniającej brak ogólnych wzorów na pierwiastki wielomianów wyższych stopni.
  • Коне́чное по́ле, или по́ле Галуа́ в общей алгебре — поле, состоящее из конечного числа элементов; это число называется поря́дком поля. Конечное поле обычно обозначается или (сокращение от Galois field) и называется полем Галуа порядка , где — число элементов поля.С точностью до изоморфизма конечное поле полностью определяется его порядком, который всегда является степенью какого-нибудь простого числа, то есть , где — простое число, а — любое натуральное число. При этом будет являться характеристикой этого поля.
  • Скінченне поле або поле Галуа (на честь Евариста Галуа) — поле, яке складається зі скінченної множини елементів. Найменше поле Галуа містить лише два елементи, та арифметичні операції над якими поводяться майже як звичайно, за винятком правила Це поле широко застосується в дискретній математиці, комп'ютерних науках і теорії кодування. Ідея застосування поля полягає в тому, що доцільно розглядати послідовності з нулів й одиниць як елементи деякої алгебраїчної структури: векторного простору над цим полем, розширення кільця многочленів тощо.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software