About: Multiplicative inverse     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMultiplicative_inverse

In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).

AttributesValues
rdfs:label
  • مقلوب عدد
  • Invers multiplicatiu
  • Převrácená hodnota
  • Kehrwert
  • Αντίστροφος
  • Multiplicative inverse
  • Inverso
  • Inverso multiplicativo
  • Alderantzizko zenbaki
  • Inverse
  • 逆数
  • Reciproco
  • 곱셈 역원
  • Liczba odwrotna
  • Omgekeerde
  • Inverso multiplicativo
  • Обратное число
  • Reciprok (matematik)
  • Обернене число
  • 倒数
rdfs:comment
  • في الرياضيات، مقلوب عدد (بالإنجليزية: Multiplicative inverse) هو العدد الذي إذا ضُرب بالعدد الأصلي يعطي القيمة 1، العنصر المحايد بالنسبة إلى عملية الضرب. يرمز لمقلوب العدد x بالرمز 1\x أو x −1.مقلوب العدد هو . على سبيل المثال، مقلوب 5 هو 1/5.
  • En matemàtiques, l'invers multiplicatiu, recíproc o simplement invers d'un nombre x, expressat com 1⁄x o x −1, és un nombre que multiplicat per x dóna com a resultat 1. L'invers d'una fracció a⁄b és b⁄a. L'invers d'un nombre real consisteix a dividir 1 entre el nombre en qüestió. Per exemple, el recíproc de 5 és un cinquè (1⁄5 o 0.2), i el recíproc de 0.25 és 4 (1 dividit per 0.25).
  • La inverso de nombro estas la rezulto de la divido de 1 per la nombro. Ekzemple: La inverso de du estas duono. En pli ĝenerala senco, la nocio inverso ankaŭ estas uzata en jenaj ekzemplaj frazoj: * La inverso de multiplikado estas dividado. * La inverso de derivaĵo estas malderivaĵo. * La inverso de funkcio estas ĝia (se ĝi ekzistas). * La inverso de pluvolvi la vidbendon estas retrovolvi ĝin.
  • Der Kehrwert (auch der reziproke Wert oder das Reziproke) einer von verschiedenen Zahl ist in der Arithmetik diejenige Zahl, die mit multipliziert die Zahl ergibt; er wird als oder notiert.
  • Matematikan, x zenbaki baten alderantzizko zenbakia 1⁄x edo x −1 adierazitako beste zenbaki bat da, zeina bider x eginez gero 1 ematen duen. 0 zenbakiak ez du alderantzizko zenbakirik. Edozein zenbaki konplexuaren alderantzizko zenbakia zenbaki konplexua ere da. Edozein zenbaki errealen alderantzizko zenbakia zenbaki erreala ere da eta edozein zenbaki arrazionalena arrazionala ere.
  • Pour les articles homonymes, voir Inverse (homonymie). Cet article est une ébauche concernant l’algèbre. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. En mathématiques, l'inverse d'un nombre non nul x (qui peut être un entier, un réel, un complexe…) est le nombre qui, multiplié par x, donne un. On le note x−1 ou . Une abstraction de cette notion est celle d'inverse dans un anneau, par exemple : de matrice inverse.
  • In matematica, con reciproco di un numero si indica il numero che moltiplicato per dia come risultato 1; e può essere indicato come (frazione unitaria) o anche . Generalmente quando si fa riferimento ai reciproci, si intendono soltanto i reciproci dei numeri interi: , ma in realtà è utilizzato anche per indicare il reciproco di un numero decimale, ad esempio il reciproco di è
  • 逆数(ぎゃくすう、英: reciprocal)とは、ある数に掛け算した結果が 1 となる数である。すなわち、数 x の逆数 y とは次のような関係を満たす。 通常、x の逆数は分数の記法を用いて 1x のように表されるか、冪の記法を用いて x−1 のように表される。 1 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、英: multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、x と y の役割を入れ替えれば、x は y の逆数であると言える。従って、x の逆数が y であるとき y の逆数は x である。x が 0 である場合、任意の数との積は 0 になるため、(0 ≠ 1 であれば)0 に対する逆数は存在しない。また、任意の x について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は x = y = 1 以外には存在しない。0 を除く任意の数 x について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。
  • Liczba odwrotna do danej liczby to taka liczba że Jest to zgodne z ogólną definicją elementu odwrotnego mnożenia w algebrze, zapisywanego zwykle jako lub W liczbach rzeczywistych jest on określany przez funkcję homograficzną W arytmetyce modularnej również można określić element odwrotny modulo jeśli i są względnie pierwsze. Element taki można uzyskać korzystając z rozszerzonego algorytmu Euklidesa dla i Pozwala to określić działanie dzielenia w dla pierwszych (i częściowo dla innych ) jako mnożenie przez odwrotność.
  • Обра́тное число́ (обратное значение, обратная величина) к данному числу x — это число, умножение которого на x даёт единицу. Принятая запись: или . Два числа, произведение которых равно единице, называются взаимно обратными. Обратное число не следует путать с обратной функцией. Например, отличается от значения функции, обратной косинусу — арккосинуса, который обозначается или .
  • Обернене число для x, позначається 1/x або x−1, це число, добуток якого з x породжує одиницю. Оберненим дробу a/b буде b/a. Для отримання оберненого для дійсного числа треба розділити 1 на число. Наприклад, обернене для 5 є 1/5, а для 0.25 це 1 розділений на 0.25, або 4. Функція f(x), яка відображає x в 1/x, це один з найпростіших прикладів самооберненої функції.
  • 數學上,一个数的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与相乘的积为1的数,记为或。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 一个非零的复数(实数)的倒数定义为使得成立的复数(实数),记作例如,的倒数是,因为 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆,或者在环中,元素3和18也沒有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为。
  • V matematice se jako převrácená (neboli reciproká) hodnota čísla x označuje to číslo, které po vynásobení číslem x dává jako výsledek 1. Převrácená hodnota čísla x se označuje jako nebo . Platí tedy, že . Nula je jediné komplexní číslo, které nemá převrácenou hodnotu. Všechna ostatní čísla ji mají, přičemž převrácená hodnota racionálního čísla je racionální číslo, převrácená hodnota reálného čísla je reálné číslo (ale převrácená hodnota celého čísla není číslo celé (s výjimkou ±1), ale číslo racionální).
  • Στα μαθηματικά ο αντίστροφος αριθμος (ως προς τον πολλαπλασιασμό) ενός αριθμού x, συμβολίζεται με 1 /x ή x−1, και, είναι ένας αριθμός που αν πολλαπλασιαστεί επί x δίνει αποτέλεσμα το ουδέτερο στοιχείο του πολλαπλασιασμού, δηλαδή τη μονάδα, 1. Γενικότερα για κάθε στοιχείο a μιας ομάδας G υπάρχει ένα αντίστροφο στοιχείο a′ ως προς τη διμελή της πράξη ∗ της ομάδας, με τις ιδιότητες: a∗a′ = e και a*e = a όπου e το ταυτοτικό ή ουδέτερο στοιχείο της ομάδας. Το e λέγεται ουδέτερο γιατί στην πράξη a*e = a, αφήνει το στοιχείο a αναλλοίωτο.
  • In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
  • En matemática, el inverso multiplicativo, recíproco o inverso de un número x no nulo, es el número, denotado como 1⁄x o x −1, que multiplicado por x da 1 como resultado. En los números reales el 0 no tiene inverso multiplicativo porque ningún número real multiplicado por 0 da como resultado 1. Excepto el 0, el inverso de un número real también es real, el inverso de un número racional es racional y todo número complejo tiene un inverso que es un número complejo. La división es la operación inversa de la multiplicación, si por definición se cumple que: , y además . Es decir:
  • 수학에서, 어떤 수의 곱셈 역원(-逆元, 영어: multiplicative inverse) 또는 역수(逆數, 영어: reciprocal)는 그 수와 곱하면 (1)이 되는 수를 말한다. 의 곱셈 역원은 와 같이 표기하거나 와 같이 쓸 수 있다. 곱하여 1이 되는 두 수를 '서로 곱셈 역원'이라 하기도 하는데, 이는 곱셈 역원 관계가 대칭 관계이기 때문에 가능한 표현이다. 즉, 만약 가 의 곱셈 역원이라면, 역시 의 곱셈 역원이다. 예를 들어, 유리수 의 곱셈 역원은 이다. 실수 의 곱셈 역원은 이며, 복소수 의 곱셈 역원은 이다. 보다 일반적으로, 유리수 의 곱셈 역원은 항상 이며, 복소수 의 곱셈 역원은 항상 이다. 0이 아닌 복소수의 곱셈 역원은 항상 존재하며, 또한 항상 유일하다. 그러나 0은 곱셈 역원을 가질 수 없는데, 이는 0에 아무런 수를 곱하여도 0이 되기 때문이다. 각 실수를 그 곱셈 역원으로 대응시키는 함수 는 의 예이다. 이러한 이름은 변숫값과 함숫값이 반비례 관계를 이룬다는 데에서 왔다.
  • Het omgekeerde (ook: de omgekeerde) of de reciproque (vaak geschreven als 'reciproke') van een getal of grootheid is 1 gedeeld door dat getal of die grootheid. De omgekeerde van een breuk ontstaat door teller en noemer te verwisselen. * Het omgekeerde van 7 is 1/7 en het omgekeerde van 2/3 is 3/2. * Het product van twee getallen die elkaars omgekeerde zijn, is gelijk aan 1. Enkele SI-eenheden zijn het omgekeerde van andere eenheden:
  • Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro. No caso de uma , o inverso deve ser tal que x y = y x = 1.
  • Ett reciprokt tal, reciprokt värde, reciprok funktion är en matematisk benämning för den multiplikativa inversen av ett tal x eller funktion f(x), det vill säga det tal x-1 = 1/x sådant att x⋅x-1 = 1, eller den funktion f(x)-1 = 1/f(x) sådan att f(x)⋅ f(x)-1 = 1. Observera att f(x) -1 = 1/f(x) ej ska förväxlas med f -1(x) som är den inversa funktionen sådan att f(x) = y och f -1(y) = x.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software