About: Annihilator (ring theory)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatIdeals, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FAnnihilator_%28ring_theory%29

In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.

AttributesValues
rdf:type
rdfs:label
  • Annihilator (Mathematik) (de)
  • Annihilator (ring theory) (en)
  • Annulateur (théorie des modules) (fr)
  • 零化イデアル (ja)
  • 소멸자 (ko)
rdfs:comment
  • In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal. (en)
  • Es gibt zwei Begriffsbildungen der Mathematik, die mit dem Wort Annullator (oder auch Annihilator) bezeichnet werden. (de)
  • En théorie des anneaux, l'annulateur d'une partie S d'un module à gauche M sur un anneau A est l'ensemble : . Ann(S) est un idéal à gauche de A. Si S est un sous-module de M, Ann(S) est même un idéal bilatère. En effet, si et , alors . Alternativement, on peut remarquer que Ann(S) n'est autre que le noyau du morphisme d'anneaux qui définit la loi externe du module S. Un élément x de M est dit simple si , autrement dit si Ann({x}) = {0}.[réf. nécessaire] (fr)
  • ( 컴퓨터 프로그래밍 용어에 대해서는 소멸자 (컴퓨터 프로그래밍) 문서를 참고하십시오.) 환론에서 소멸자(消滅子, 영어: annihilator)는 가군의 주어진 부분 집합을 모두 0에 대응시키는 환 원소들로 구성된 아이디얼이다. (ko)
  • 数学、特に加群論において、集合の零化イデアルあるいは零化域(英: annihilator, /ənáiəlèitər/, /ə-ˈnī-ə-ˌlā-tər/)はねじれや直交性を一般化した概念である。 (ja)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal. (en)
  • Es gibt zwei Begriffsbildungen der Mathematik, die mit dem Wort Annullator (oder auch Annihilator) bezeichnet werden. (de)
  • En théorie des anneaux, l'annulateur d'une partie S d'un module à gauche M sur un anneau A est l'ensemble : . Ann(S) est un idéal à gauche de A. Si S est un sous-module de M, Ann(S) est même un idéal bilatère. En effet, si et , alors . Alternativement, on peut remarquer que Ann(S) n'est autre que le noyau du morphisme d'anneaux qui définit la loi externe du module S. Un élément x de M est dit simple si , autrement dit si Ann({x}) = {0}.[réf. nécessaire] (fr)
  • ( 컴퓨터 프로그래밍 용어에 대해서는 소멸자 (컴퓨터 프로그래밍) 문서를 참고하십시오.) 환론에서 소멸자(消滅子, 영어: annihilator)는 가군의 주어진 부분 집합을 모두 0에 대응시키는 환 원소들로 구성된 아이디얼이다. (ko)
  • 数学、特に加群論において、集合の零化イデアルあるいは零化域(英: annihilator, /ənáiəlèitər/, /ə-ˈnī-ə-ˌlā-tər/)はねじれや直交性を一般化した概念である。 (ja)
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software