About: Ideal (ring theory)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIdeal_%28ring_theory%29

In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any other integer results in another even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring similarly to the way that, in group theory, a normal subgroup can be used to construct a quotient group.

AttributesValues
rdf:type
rdfs:label
  • مثالي (نظرية الحلقات)
  • Ideal (matemàtiques)
  • Ideál (teorie okruhů)
  • Ideal (Ringtheorie)
  • Ιδεώδες (μαθηματικά)
  • Ideal (ring theory)
  • Idealo (matematiko)
  • Ideal (teoría de anillos)
  • Idéal
  • Ideale (matematica)
  • イデアル (環論)
  • 아이디얼
  • Ideaal (ringtheorie)
  • Ideał (teoria pierścieni)
  • Ideal (teoria dos anéis)
  • Идеал (алгебра)
  • Ideal (ringteori)
  • Ідеал (алгебра)
  • 理想 (环论)
rdfs:comment
  • في نظرية الحلقات، و هي فرع من الجبر التجريدي، المثالي (بالإنجليزية: Ideal) مجموعة جزئية خاصة من حلقة تحقق عددا من الشروط. و يعمم مفهوم المثالي مفهوم بعض المجموعات الجزئية من مجموعة الأعداد الصحيحة كمجموعة الأعداد الزوجية أو مجموعة مضاعفات العدد 3. جمع وطرح الأعداد الزوجية يعطيان دائما عددا زوجيا، وضرب عدد زوجي في عدد صحيح ما يعطي دائما عددا زوجيا. هذان الخاصيتان المتمثلتان في الانغلاق والمص هما اللتان تعرفان مفهوم المجموعة المثالية.
  • Ideál je matematický pojem z oblasti algebry označující podmnožinu nějakého okruhu s jistými „dobrými“ vlastnostmi. * Tak jako normální podgrupy jsou speciálními případy podgrup, jsou rovněž ideály jisté podmnožiny daného okruhu.
  • Στη Θεωρία δακτυλίων ιδεώδες είναι ένα ειδικό υποσύνολο του δακτυλίου.
  • Matematike, idealo de ringo estas tia adicia subgrupo de , ke al ĝi apartenas la produtoj * (maldekstra idealo), * (dekstra idealo), aŭ * kaj (ambaŭflanka aŭ duflanka idealo) elementoj kaj . La rolo de idealoj en la teorio de ringoj estas simila al la rolo de en la teorio de grupoj. Specife, la de ringa estas idealo, kaj se estas subringo de oni povas krei la se kaj nur se estas idealo. Simile oni difinas la idealojn en semigrupoj.
  • En Álgebra moderna, un ideal es una subestructura algebraica definida en la teoría de anillos. Los ideales generalizan, de manera fecunda, el estudio de la divisibilidad entre los números enteros hacia otros objetos matemáticos. De este modo, es posible enunciar versiones muy generales de teoremas de la aritmética elemental, tales como el teorema chino del resto o el teorema fundamental de la aritmética, válidos para los ideales. Se puede comparar también esta noción con la de subgrupo normal para la estructura algebraica de grupo en el sentido de que facilita definir la noción de anillo cociente como una extensión natural de la noción de grupo cociente .​
  • In matematica, e più precisamente in algebra, un ideale è un sottoinsieme di un anello chiuso rispetto alla somma interna e al prodotto con qualsiasi elemento dell'anello.
  • 환론에서, 아이디얼(영어: ideal) 또는 이데알(독일어: Ideal)은 특정한 조건을 만족시키는 환의 부분집합이다. 이에 대하여 몫환을 취할 수 있으며, 군론에서 정규 부분군에 대하여 몫군을 취하는 것과 유사한 개념이다. 아이디얼을 사용하여 수론적 개념을 보다 일반적인 환들에 대하여 확장시킬 수 있다. 예를 들어, 소수의 개념을 확장한 소 아이디얼 및 서로소인 수의 개념을 확장한 서로소 아이디얼을 정의하면, 일반화된 중국인의 나머지 정리를 증명할 수 있다. 수론에서 중요한 개념인 데데킨트 정역의 경우, 아이디얼에 대해 산술의 기본정리까지도 성립함을 보일 수 있다. (즉, 임의의 0이 아닌 아이디얼은 소 아이디얼들의 곱으로 유일하게 표현할 수 있다.)
  • Ideał – podzbiór pierścienia o własnościach pozwalających na konstrukcję pierścienia ilorazowego. Pojęcie ideału zostało wprowadzone przez Dedekinda jako uogólnienie pojęcia liczby idealnej, rozważanego przez Kummera. Badania Dedekinda były kontynuowane przez Hilberta i, szczególnie, przez Emmę Noether. Ideały odgrywają w teorii pierścieni rolę analogiczną do podgrup normalnych w teorii grup.
  • 理想(Ideal)是一个环论中的概念。若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
  • Ідеал — підструктура з певними властивостями в абстрактній алгебрі. Спочатку виникло поняття ідеал кільця, пізніше було узагальнено для інших алгебраїчних структур. Найважливішу роль ідеали відіграють при вивченні кілець, напівгруп, алгебр над кільцем та ін. Назва «ідеал» веде своє походження від . Ідеали дають зручну мову для узагальнення результатів теорії чисел на загальні кільця. Прикладом ідеала може служити підкільце парних чисел в кільці цілих чисел, позначають 2Z.
  • Un ideal d'un anell A és un subconjunt I d'elements de A que és tancat respecte a i que compleix una sèrie de condicions que detallarem a continuació. Per permetre l'aplicació a anells no commutatius, es defineixen ideals per l'esquerra i ideals per la dreta. Els ideals per les dues bandes (per exemple els d'anells commutatius) s'anomenen ideals bilàters o senzillament ideals.
  • In der abstrakten Algebra ist ein Ideal eine Teilmenge eines Rings, die das Nullelement enthält und abgeschlossen gegenüber Addition und Subtraktion von Elementen des Ideals sowie abgeschlossen gegenüber Multiplikation mit beliebigen Ringelementen ist. Beispielsweise sind Summe und Differenz zweier gerader Zahlen wieder gerade und zudem ist das Produkt einer geraden Zahl mit einer beliebigen ganzen Zahl ebenfalls gerade. Zudem ist die 0 als additiv Neutrales gerade. Das heißt, die Menge der geraden Zahlen ist ein Ideal im Ring der ganzen Zahlen.
  • In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any other integer results in another even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring similarly to the way that, in group theory, a normal subgroup can be used to construct a quotient group.
  • En mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau et qui est de plus stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
  • 抽象代数学の分野である環論におけるイデアル(英: ideal, 独: Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や 3 の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 Z の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。
  • Een ideaal is in de abstracte algebra, specifiek in de ringtheorie (een deelgebied van de wiskunde), een speciale deelverzameling van een ring, die gesloten is ten aanzien van lineaire combinaties met coëfficiënten uit de ring. Dat houdt in dat een ideaal ten aanzien van de operatie optelling een ondergroep is en dat de operatie vermenigvuldiging, zowel links als rechts, van een element uit het ideaal met een element van de ring een resultaat geeft dat binnen het ideaal ligt.
  • Em teoria dos anéis, um ramo da álgebra abstrata, um ideal é um subconjunto especial de um anel. O conceito generaliza de uma maneira apropriada algumas importantes propriedades dos inteiros como "número par" e "múltiplo de 3". Um ideal pode ser usado para a construção de um anel quociente da mesma forma que um subgrupo normal pode ser usado para a construção de um grupo quociente.
  • Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
  • En icke-tom delmängd I till ringen R kallas för ett ideal om: 1. I är en additiv delgrupp till R.2. Om för varje element i som tillhör I och r som tillhör R följer, att både i·r och r·i tillhör I. Den icke-tomma delmängden I av de hela talen Z, är ett ideal om för alla x och y i I följer att x - y tillhör I. Inom ringteorin, är ett ideal ett av Richard Dedekind infört begrepp i anslutning till ett uppslag av Ernst Kummer, kallat "ideala tal". Detta begrepp var tänkt för att bevara den entydiga faktoriseringen för algebraiska heltal (motsvarande heltalens primtalsfaktoriseringar).
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software