About: Module (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FModule_%28mathematics%29

In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module. A module taking its scalars from a ring R is called an R-module.

AttributesValues
rdf:type
rdfs:label
  • فضاء حلقي
  • Mòdul
  • Modul (matematika)
  • Modul (Mathematik)
  • Πρότυπο (άλγεβρα)
  • Module (mathematics)
  • Modulo (matematiko)
  • Módulo (matemática)
  • Module sur un anneau
  • Modulo (algebra)
  • 環上の加群
  • 가군
  • Moduul
  • Moduł (matematyka)
  • Модуль над кольцом
  • Módulo (álgebra)
  • Modul (matematik)
  • Модуль над кільцем
rdfs:comment
  • Un A-mòdul és una estructura algebraica que involucra un anell A i un grup abelià. Es tracta d'una generalització de l'estructura d'espai vectorial en la qual el cos d'escalars és substituït per un anell.
  • Modul v matematice (zejména v algebře) představuje určitým způsobem zobecnění vektorového prostoru. Zatímcodefinice vektorového prostoru vyžaduje, aby skaláry byly prvky tělesa, v případě modulu stačí, že skaláry jsou prvky okruhu. Moduly mají mnoho vlastností podobných vektorovým prostorům, ale například nemusí mít bázi. A i pokud ji mají (takové moduly nazývámevolné), pak nemusí mít tato báze jednoznačně daný počet prvků.
  • Έστω δακτύλιος R.Μια αβελιανή ομάδα Μ εφοδιασμένη με μία απεικόνιση την οποία θα ονομάζουμε εξωτερικό πολλαπλασιασμό ή R-δράση επί του Μ, καλείται R-πρότυπο (R-module) αν ισχύουν τα εξής: * * * * για κάθε και
  • En abstrakta algebro, la nocio modulo super ringo estas komuna ĝeneraligo de du plej gravaj nocioj en algebro, vektora spaco, kaj komuta grupo.
  • En mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, « un module est à un anneau ce qu'un espace vectoriel est à un corps » : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
  • 抽象代数学における環上の加群(かぐん、英: module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。
  • 환론에서, 가군(加群, 영어: module 모듈[*])은 어떤 환의 작용이 주어진 아벨 군이다. 즉, 아벨 군의 구조와 환의 원소에 대한 곱셈이 주어지며, 이 두 구조가 분배 법칙을 통해 서로 호환되는 대수 구조이다. 가군의 개념은 체 위의 벡터 공간과 아벨 군의 개념의 공통적인 일반화이다. 가군 이론은 군의 표현론과 밀접한 연관이 있으며, 가환대수학과 호몰로지 대수학의 주요 대상이며, 대수기하학과 대수적 위상수학에서 중요하게 사용된다.
  • Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
  • Мо́дуль над кольцо́м — одно из основных понятий в общей алгебре, являющееся обобщением двух алгебраических понятий — векторного пространства (фактически, векторное пространство — это модуль над полем), и абелевой группы (которая является модулем над кольцом целых чисел ). Понятие модуля лежит в основе коммутативной алгебры, которая играет важную роль в различных областях математики, таких как * алгебраическая геометрия, * гомологическая алгебра, * теория представлений групп.
  • 在數學的抽象代數中,環上的模(module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。
  • Модуль над кільцем — алгебраїчна структура в абстрактній алгебрі, що є узагальненням понять: * векторного простору (де кільце скалярів утворює поле); * абелевої групи (де кільце збігається з цілими числами ). Модуль є адитивною абелевою групою де визначене множення між елементами кільця скалярів та елементами модуля і воно є асоціативним (між елементами кільця) та дистрибутивним.
  • الفضاء الحلقي هو كائن رياضي يتسنى فيه الجمع بين الأشياء تبادليًّا من خلال معاملات الضرب، وتتحقق فيه معظم قواعد التلاعب بالمتجهات. يشبه الفضاء الحلقي كثيرًا الفضاء المتجهي تجريديًّا، وإن كانت تؤخذ المعاملات فيها في حلقات والتي هي كائنات جبرية أعم من الحقول المستخدَمة في الفضاء المتجهي. والفضاء المتجهي الذي يأخذ معاملاته في حلقة يسمى فضاءً متجهيًّا على . تمثل الفضاءات الحلقية الأداة البسيطة في الجبر التماثلي. وتتضمن الأمثلة عليها مجموعة الأعداد الصحيحة والشبكية المكعبة في البعد ورمزها ، وكذلك لأي زمرة. ،
  • Ein Modul [ˈmoːdʊl] (Maskulinum, Plural: Moduln [ˈmoːdʊln], die Deklination ist ähnlich wie die von Konsul; von lateinisch modulus, Verkleinerungsform von modus, „Maß“, „Einheit“) ist eine algebraische Struktur, die eine Verallgemeinerung eines Vektorraums darstellt.
  • In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module. A module taking its scalars from a ring R is called an R-module.
  • En matemáticas, un módulo es una de las estructuras algebraicas fundamentales usadas en álgebra abstracta. Un módulo sobre un anillo es una generalización de la noción de espacio vectorial sobre un cuerpo, donde los correspondientes escalares son los elementos un anillo (con identidad) arbitrario y donde está definida una multiplicación (a la izquierda y/o a la derecha) entre elementos del anillo y elementos del módulo.
  • In matematica, e in particolare in algebra, un modulo è una struttura algebrica che generalizza il concetto di spazio vettoriale richiedendo che gli scalari non costituiscano un campo ma un anello: un modulo su un anello A è quindi un gruppo abeliano M su cui è definita un'operazione che associa ad ogni elemento di A e ad ogni elemento di M un nuovo elemento di M. La nozione di modulo è centrale nell'algebra commutativa e nell'algebra omologica, e forma la base della teoria delle rappresentazioni dei gruppi; è inoltre usata nella geometria algebrica e nella topologia algebrica.
  • In de abstracte algebra, een deelgebied van de wiskunde, is een moduul over een ring een generalisatie van een vectorruimte. In plaats van te eisen, zoals bij een vectorruimte, dat de scalairen in een lichaam liggen, mogen de "scalairen" bij een moduul in een willekeurige ring liggen. Modulen zijn generalisaties van abelse groepen, die op hun beurt modulen over zijn. Modulen vormen een centraal begrip in de commutatieve algebra en de homologische algebra. Zij worden op grote schaal gebruikt in de algebraïsche meetkunde en de algebraïsche topologie.
  • En modul är inom ringteorin motsvarigheten till ett vektorrum i linjär algebra, och elementen i en modul motsvarar på samma sätt vektorer. Varje modul är en modul över någon unitär ring, ringen av "skalärer" till modulen. Två element i modulen kan adderas, och en skalär och ett modulelement kan multipliceras. I båda fallen är resultatet av operationen ett element i modulen. Denna addition och multiplikation uppfyller precis samma åtta grundläggande räknelagar som vektoradditionen och multiplikationen av skalärer och vektorer uppfyller i den linjära algebran.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software