This HTML5 document contains 219 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n12https://web.archive.org/web/20120907020242/http:/www.ce.udel.edu/faculty/kaliakin/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n24http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n7https://books.google.com/
n23https://global.dbpedia.org/id/
n16https://web.archive.org/web/20120522142125/http:/www.mso.anu.edu.au/~geoff/HEA/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
n22https://books.google.com/books%3Fid=56WqzKbTMtMC&q=Cartesian+Tensors:
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n20http://www.damtp.cam.ac.uk/user/reh10/lectures/

Statements

Subject Item
dbr:Euclidean_tensor
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
dbo:wikiPageRedirects
dbr:Cartesian_tensor
Subject Item
dbr:Piezoelectricity
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
Subject Item
dbr:Direction_cosine
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
Subject Item
dbr:Glossary_of_tensor_theory
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
Subject Item
dbr:Tensor
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
Subject Item
dbr:Cartesian_tensor
rdf:type
yago:Quantity105855125 yago:Cognition100023271 yago:Variable105857459 yago:Abstraction100002137 yago:WikicatTensors yago:Tensor105864481 yago:Concept105835747 yago:Idea105833840 yago:PsychologicalFeature100023100 yago:Content105809192
rdfs:label
Cartesian tensor
rdfs:comment
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is through an orthogonal transformation. The most familiar coordinate systems are the two-dimensional and three-dimensional Cartesian coordinate systems. Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product.
foaf:depiction
n11:Rectangular_coordinate_system_position_vector_index_lowered.svg n11:Rectangular_coordinate_systems_angles_index_lowered.svg n11:Rectangular_coordinate_systems_index_lowered.svg n11:Epsilon_volume_anticyclic_permutations.svg n11:Epsilon_volume_cyclic_permutations.svg
dct:subject
dbc:Tensors dbc:Applied_mathematics dbc:Linear_algebra
dbo:wikiPageID
1824845
dbo:wikiPageRevisionID
1121749472
dbo:wikiPageWikiLink
dbr:Navier-Stokes_equations dbr:Norm_(mathematics) dbr:Vector_calculus dbr:Material_derivative dbr:Dyadic_tensor dbr:Quantum_mechanics dbr:Electromagnetism dbr:Parallelepiped dbr:Matrix_transpose dbr:Torque dbr:Power_(physics) dbr:Linear_combination dbr:Passive_transformation dbr:Rotation_(mathematics) dbr:Unit_vector dbr:Scalar_field dbr:Matrix_inverse dbr:Einstein_notation dbr:Inner_product dbr:Matrix_multiplication dbr:Physics dbr:Column_vector dbr:Current_density dbr:Vector_space dbr:Tensor_index_notation dbr:Constitutive_equation dbr:Electric_field dbr:Linear_transformation dbr:Tensor_field dbr:Levi-Civita_symbol dbr:Newtonian_gravitation dbr:Ricci_calculus dbr:Divergence dbr:Volume dbr:Rotation_group dbr:Electric_dipole dbr:Dot_product dbr:Magnetization dbc:Tensors dbr:Tensor_calculus dbr:Function_(mathematics) dbr:Lorentz_force dbr:Laplacian_operator dbr:Orientation_(vector_space) dbr:Magnetic_moment dbr:Orthonormal_basis dbr:Symmetric_matrix dbr:Kinetic_energy dbr:Angular_momentum dbr:Moment_of_inertia dbr:Angular_velocity dbr:Tensor_algebra dbr:Permittivity dbr:Continuum_mechanics dbr:Cartesian_coordinate dbr:Reflection_(mathematics) dbr:Rotation_matrix dbr:Metric_tensor dbr:General_relativity dbr:Magnetic_permeability dbr:Position_vector dbr:Electromagnetic_tensor dbr:Spherical_coordinate_system dbr:Tensor_contraction dbr:Curl_(mathematics) dbr:Engineering dbr:Row_vector dbr:Diagonal_matrix dbr:Inverse_function dbr:Unit_normal dbr:Partial_derivative dbr:Scalar_triple_product dbr:Field_(mathematics) dbr:Orthonormal dbr:Heat_conduction dbr:Geometry dbr:Jacobian_matrix dbr:Velocity_field dbr:Vector_calculus_identities dbr:Electric_susceptibility dbr:Improper_rotation dbr:Cube dbr:Exponent dbr:Multilinear_function dbr:Product_rule dbr:Determinant dbr:Vector_field dbc:Applied_mathematics dbr:Mixed_tensor dbr:Mathematical_analysis dbr:Three-dimensional_space dbr:Transformation_matrix dbr:Relativistic_angular_momentum dbr:Body_force dbr:Cauchy_stress_tensor dbr:Tangent dbr:Representation_(mathematics) dbr:Two-dimensional_space dbr:Pseudovector dbr:Gradient dbr:Kronecker_delta dbr:Direction_cosine dbr:Cyclic_permutation dbr:Inverse_matrix dbr:Orthogonal_matrix dbr:Orthogonal_coordinates dbr:Tensors_in_curvilinear_coordinates dbr:Potential_energy dbr:Magnetic_dipole dbr:Orthogonal_transformation dbr:Magnetic_field dbr:Rigid_body dbr:Rigid_body_dynamics dbr:Electric_charge dbr:Raising_and_lowering_indices dbr:Directional_derivative dbr:Electric_dipole_moment dbr:Polarizability dbr:Identity_matrix dbr:Momentum dbr:Polarization_density n24:Rectangular_coordinate_system_position_vector_index_lowered.svg dbr:Cartesian_coordinates n24:Rectangular_coordinate_systems_angles_index_lowered.svg n24:Rectangular_coordinate_systems_index_lowered.svg dbr:Tensor dbr:Linear_algebra dbr:Curvilinear_coordinates dbr:Tensor_product dbr:Electrical_conductivity dbr:Coordinate_system dbc:Linear_algebra dbr:Coordinate_vector dbr:Covariance_and_contravariance_of_vectors dbr:Rectangular_coordinate_system dbr:Fluid_mechanics dbr:Standard_basis dbr:Real_number dbr:Velocity dbr:Pseudotensor dbr:Multidimensional_array dbr:Three_dimensions dbr:Cross_product dbr:Euler_angle dbr:Euclidean_space dbr:Special_relativity
dbo:wikiPageExternalLink
n7:books%3Fid=AQCsAxpZ7ToC&q=cartesian+tensor&pg=PA144 n7:books%3Fid=iG5W9IQhjd4C&q=cartesian+tensor&pg=PA45 n12:appendix_tensors.pdf n7:books%3Fid=9-pJ7Kg5XmAC&q=cartesian+tensor n7:books%3Fid=8vlGhlxqZjsC&q=cartesian+tensor&pg=PA127 n16:A1_Tensors.pdf n7:books%3Fid=7BcpyUjmLpUC&q=cartesian+tensor n7:books%3Fid=RO_TMc7ETPEC&q=cartesian+tensor n7:books%3Fid=PODXAAAAMAAJ n7:books%3Fid=oOYIAQAAIAAJ&q=cartesian+tensors n20:nst-mmii-chapter3.pdf n7:books%3Fid=vpW_sBxwr88C&q=cartesian+tensor&pg=PA103 n22:+An+Introduction+temple
owl:sameAs
freebase:m.0vxgk8v wikidata:Q17004583 yago-res:Cartesian_tensor n23:fcMe
dbp:wikiPageUsesTemplate
dbt:Slink dbt:Tensors dbt:Anchor dbt:Overline dbt:Equation_box_1 dbt:Cite_book dbt:Reflist dbt:Multiple_image
dbo:thumbnail
n11:Rectangular_coordinate_systems_index_lowered.svg?width=300
dbp:border
1
dbp:caption
Cyclic permutations of index values and positively oriented cubic volume. Anticyclic permutations of index values and negatively oriented cubic volume.
dbp:footer
259200.0 ei ⋅ ej × ek Non-zero values of the Levi-Civita symbol εijk as the volume
dbp:image
Epsilon volume anticyclic permutations.svg Epsilon volume cyclic permutations.svg
dbp:totalWidth
340
dbo:abstract
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is through an orthogonal transformation. The most familiar coordinate systems are the two-dimensional and three-dimensional Cartesian coordinate systems. Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product. Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics. Sometimes general curvilinear coordinates are convenient, as in high-deformation continuum mechanics, or even necessary, as in general relativity. While orthonormal bases may be found for some such coordinate systems (e.g. tangent to spherical coordinates), Cartesian tensors may provide considerable simplification for applications in which rotations of rectilinear coordinate axes suffice. The transformation is a passive transformation, since the coordinates are changed and not the physical system.
dbp:backgroundColour
white
dbp:borderColour
black
dbp:cellpadding
6
dbp:indent
:
prov:wasDerivedFrom
wikipedia-en:Cartesian_tensor?oldid=1121749472&ns=0
dbo:wikiPageLength
65191
foaf:isPrimaryTopicOf
wikipedia-en:Cartesian_tensor
Subject Item
dbr:List_of_things_named_after_René_Descartes
dbo:wikiPageWikiLink
dbr:Cartesian_tensor
Subject Item
wikipedia-en:Cartesian_tensor
foaf:primaryTopic
dbr:Cartesian_tensor