An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The history of Mars observation is about the recorded history of observation of the planet Mars. Some of the early records of Mars' observation date back to the era of the ancient Egyptian astronomers in the 2nd millennium BCE. Chinese records about the motions of Mars appeared before the founding of the Zhou Dynasty (1045 BCE). Detailed observations of the position of Mars were made by Babylonian astronomers who developed arithmetic techniques to predict the future position of the planet. The ancient Greek philosophers and Hellenistic astronomers developed a geocentric model to explain the planet's motions. Measurements of Mars' angular diameter can be found in ancient Greek and Indian texts. In the 16th century, Nicolaus Copernicus proposed a heliocentric model for the Solar System in wh

Property Value
dbo:abstract
  • La història de l'observació de Mart tracta sobre la història registrada de l'observació del planeta Mart feta pels humans. Alguns dels primers registres de l'observació de Mart es remunten a l'era dels antics astrònoms egipcis del 2n mil·lenni aC. L'astronomia xinesa també va estudiar els moviments de Mart abans de la fundació de la dinastia Zhou (1045 aC). Els astrònoms babilonis havien portat a terme observacions detallades de la posició de Mart, tot i desenvolupant tècniques aritmètiques per predir la posició futura del planeta. Els filòsofs grecs antics i els astrònoms de l'antiga Grècia van desenvolupar una teoria geocèntrica per explicar els moviments del planeta. Les mesures del diàmetre angular de Mart ja es podien trobar en textos de l'antiga astronomia india. Al segle XVI, Nicolau Copèrnic va proposar un model heliocèntric per al Sistema Solar en el qual els planetes seguien òrbites circulars sobre el Sol. Aquest paradigma va ser revisat per Johannes Kepler, postulant una òrbita el·líptica per a Mart que s'ajustava amb més precisió a les dades d'observació. La primera observació telescòpica de Mart va ser feta per Galileo Galilei el 1610. Al cap d’un segle, els astrònoms van descobrir diferents , incloent el pegat fosc Syrtis Major Planum i els casquets polars. Per aquest motiu es van poder determinar el període de rotació i l'obliqüitat de l'ecliptica del planeta. Aquestes observacions es van fer principalment durant els intervals de temps en què el planeta estava situat en oposició al Sol, punt en què Mart fa les seves aproximacions més properes a la Terra. Els millors telescopis desenvolupats a principis del segle XIX van permetre cartografiar detalladament les característiques permanents del albedo marcià. El primer mapa cru de Mart es va publicar el 1840, seguit de mapes més refinats a partir del 1877. Quan els astrònoms van pensar erròniament que havien detectat la línia espectral de l'aigua a l'atmosfera marciana, la idea de la vida a Mart es va popularitzar entre el públic. Percival Lowell creia que podia veure una xarxa de canals artificials a Mart. Aquestes característiques lineals més tard van demostrar ser una il·lusió òptica, i es va trobar que l’atmosfera era massa prima per suportar un entorn semblant a la Terra. Des de la dècada de 1870 s’observen núvols grocs a Mart, que Eugène M. Antoniadi va suggerir que eren sorra o pols bufada pel vent. Durant la dècada de 1920, es va mesurar l'intèrval de temperatura superficial marciana que oscil·lava entre −85 a 7 °C (−121 a 45 °F). Així mateix es va trobar que l’atmosfera planetària era àrida amb només traces d’oxigen i aigua. El 1947, Gerard Kuiper demostraria que la fina atmosfera marciana contenia dosis grans de diòxid de carboni ; aproximadament el doble de la quantitat que es troba a l'atmosfera terrestre. La primera nomenclatura estàndard per a les característiques de l'albedo de Mart va ser adoptada el 1960 per la Unió Astronòmica Internacional. Des dels anys seixanta, s'han enviat múltiples naus espacials robòtiques per explorar Mart des de l’òrbita i la superfície. El planeta s’ha mantingut sota observació mitjançant instruments terrestres i espacials en un ampli ventall de l’ espectre electromagnètic. El descobriment de meteorits a la Terra originats a Mart ha permès examinar en laboratori les condicions químiques del planeta. (ca)
  • يمتد تاريخ رصد المريخ للفلكيين المصريين في الألفية الثانية قبل الميلاد. وهناك أيضًا سجلات صينية عن تحركات المريخ ترجع إلى ما قبل تأسيس مملكة تشو (1045 ق.م). وقد قام فلكيون بابليون بتسجيل ملاحظات عن موقع المريخ بالتفصيل، وطوّر الفلكيون أيضًا تقنيات رياضية تفيد في التنبؤ بموقع المريخ في المستقبل. وكذلك طوّر الفلاسفة اليونانيون القدماء والفلكيون الهيلنيون نموذجًا فلكيًا يحتل كوكب الأرض فيه المركز، واستخدموه في تفسير تحركات المريخ. وكذلك قام الفلكيون الهنود والفلكيون المسلمون بتقدير حجم المريخ والمسافة بينه وبين الأرض. وفي القرن السادس عشر، قدم نيكولاس كوبرنيكوس نموذجًا فلكيًا تحتل الشمس فيه مركز المجموعة الشمسية، وتدور الكواكب في هذا النموذج في مدارات دائرية حول الشمس. وقد راجع يوهانس كيبلر هذا النموذج، وخلص إلى أن مدار المريخ هو مدار إهليجي، وهذا يتوافق بشكل أكبر مع بيانات الرصد التي توفرت حينها. وكان جاليليو جاليلي أول من راقب المريخ باستخدام تلسكوب في 1610. وفي خلال قرن واحد، اكتشف الفلكيون وضاءة مائزة للكوكب؛ ومنها الرقعة الداكنة المسماة (سايرتايس ماجر بلانم) وأيضًا الأغطية الثلجية القطبية، بالإضافة إلى ذلك، تمكن العلماء من تحديد فترة دوران الكوكب وميله المحوري. وقد سُجلت تلك المعلومات في الفترة التي كان المريخ يقابل الشمس فيها، وذلك لأنه في هذه الفترة يكون المريخ في أقرب موقع للأرض. وتلي تليسكوب جاليليو أنواع أخرى أكثر تطورًا في بداية القرن التاسع عشر، وبفضلها تمكن العلماء من تحديد مواقع الوضاءة بالتفصيل. ونُشرت خريطة أولية للمريخ في 1840، ولحقتها آخريات أكثر وضوحًا بداية من 1877 فصاعدًا. وحينما خال الفلكيون أنهم قد وجدوا دالًا على وجود ماء في الغلاف الجوي الخاص بالمريخ، انتشرت فكرة وجود حياة على المريخ بين العامة. بالإضافة إلى ذلك، ظن بيرسفال لوفل أنه يرى شبكة قنوات صناعية على سطح المريخ، ولكن اتضح فيما بعد أن تلك العلامات الخطية ليست إلا ، وأن الغلاف الجوي المريخي رقيق بدرجة لا تدعم وجود حياة تشبه تلك التي على سطح الأرض. وقد رُصدت السحب الصفراء في الغلاف الجوي للمريخ منذ سبعينيات القرن التاسع عشر، واعتقد يوجنيوس مايكل أنطونيادي أنها تكونت جراء رمال أو تراب تذره الرياح. وفي عشرينيات القرن العشرين، قيست نسبة درجة حرارة سطح المريخ، وتراوحت بين 85- إلى 7 درجة سلزيوس (-121 إلى 45 درجة فهرنهايت). ووجد الفلكيون أيضًا أن الغلاف الجوي الخاص بالكوكب جاف ويوجد به كميات ضئيلة من الأكسجين والماء. وفي 1947، برهن جيرارد كايبر أن الغلاف الجوي المريخي يحتوي على كميات كبيرة من ثاني أكسيد الكربون؛ وقدرت الكمية بأنها ضعف تلك الموجودة في الغلاف الجوي الأرضي. وقد اعتمد الاتحاد الفلكي الدولي في 1960 أول مجموعة مصطلحات رسمية للوضاءات المريخية. ومنذ ستينيات القرن العشرين، أُرسلت المركبات الفضائية ذات المهام الآلية المتعددة لاستكشاف المريخ؛ سطحًا ومدارًا. ومنذ ذلك الحين فصاعدًا، يخضع المريخ للرصد باستخدام أدوات موجودة على الأرض وأخرى في الفضاء وذلك من خلال تقصي مصادر الأطياف الكهرومغناطيسية الكثيرة المنبعثة منه. وكذلك أدى اكتشاف الأحجار النيزكية المريخية على الأرض إلى فحص معملي للمواد الكيميائية على المريخ. (ar)
  • Die nachgewiesene Geschichte der Marsbeobachtung geht zurück bis in die Zeit der Astronomie im Alten Ägypten im 2. Jahrtausend v. Chr. Chinesische Aufzeichnungen über die Bewegungen des Mars erschienen vor der Gründung der Zhou Dynasty (1045 v. Chr.). Genaue Beobachtungen der Position des Mars geschahen durch babylonische Astronomen, die arithmetische Methoden entwickelten, um die zukünftige Position des Planeten vorherzusagen. Die alten griechischen Philosophen und Astronomen entwickelten ein geozentrisches Weltbild, um die Planetenbewegung vorherzusagen. Vermessungen der Winkelausdehnung (auch scheinbarer Durchmesser) des Mars, gab es bereits in alten griechischen und indischen Texten. Anders als bei Sternbedeckungen durch den Mond, die an seiner im Schatten befindlichen Seite augenblicklich erfolgen, dauert die vollständige Bedeckung eines Planeten durch die Mondscheibe je nach scheinbarem Winkeldurchmesser mehrere Sekunden. Aristoteles erwähnt in seiner Schrift Über den Himmel zum Beispiel die Bedeckung des Planeten Mars durch die Schattenseite des zunehmenden Halbmonds im Sternbild Löwe am 5. April 357 v. Chr. in den frühen Abendstunden, bei der es über 15 Sekunden lang gedauert hatte, bis der Mars nach dem ersten scheinbaren Kontakt mit der Mondscheibe vollständig verschwand. Im 16. Jahrhundert schlug Nikolaus Kopernikus ein heliozentrisches Weltbild für das Solarsystem vor, in dem die Planeten zirkulär um die Sonne kreisen. Dieses Modell wurde von Johannes Kepler abgeändert, was eine elliptische Umlaufbahn des Mars hervorbrachte, welcher den Daten der Beobachtungen genauer entsprach. (de)
  • The history of Mars observation is about the recorded history of observation of the planet Mars. Some of the early records of Mars' observation date back to the era of the ancient Egyptian astronomers in the 2nd millennium BCE. Chinese records about the motions of Mars appeared before the founding of the Zhou Dynasty (1045 BCE). Detailed observations of the position of Mars were made by Babylonian astronomers who developed arithmetic techniques to predict the future position of the planet. The ancient Greek philosophers and Hellenistic astronomers developed a geocentric model to explain the planet's motions. Measurements of Mars' angular diameter can be found in ancient Greek and Indian texts. In the 16th century, Nicolaus Copernicus proposed a heliocentric model for the Solar System in which the planets follow circular orbits about the Sun. This was revised by Johannes Kepler, yielding an elliptic orbit for Mars that more accurately fitted the observational data. The first telescopic observation of Mars was by Galileo Galilei in 1610. Within a century, astronomers discovered distinct albedo features on the planet, including the dark patch Syrtis Major Planum and polar ice caps. They were able to determine the planet's rotation period and axial tilt. These observations were primarily made during the time intervals when the planet was located in opposition to the Sun, at which points Mars made its closest approaches to the Earth.Better telescopes developed early in the 19th century allowed permanent Martian albedo features to be mapped in detail. The first crude map of Mars was published in 1840, followed by more refined maps from 1877 onward. When astronomers mistakenly thought they had detected the spectroscopic signature of water in the Martian atmosphere, the idea of life on Mars became popularized among the public. Percival Lowell believed he could see a network of artificial canals on Mars. These linear features later proved to be an optical illusion, and the atmosphere was found to be too thin to support an Earth-like environment. Yellow clouds on Mars have been observed since the 1870s, which Eugène M. Antoniadi suggested were windblown sand or dust. During the 1920s, the range of Martian surface temperature was measured; it ranged from −85 to 7 °C (−121 to 45 °F). The planetary atmosphere was found to be arid with only trace amounts of oxygen and water. In 1947, Gerard Kuiper showed that the thin Martian atmosphere contained extensive carbon dioxide; roughly double the quantity found in Earth's atmosphere. The first standard nomenclature for Mars albedo features was adopted in 1960 by the International Astronomical Union. Since the 1960s, multiple robotic spacecraft have been sent to explore Mars from orbit and the surface. The planet has remained under observation by ground and space-based instruments across a broad range of the electromagnetic spectrum.The discovery of meteorites on Earth that originated on Mars has allowed laboratory examination of the chemical conditions on the planet. (en)
  • Los primeros registros de la observación de Marte se remontan a la era de los antiguos astrónomos egipcios en el II milenio a. C. Más tarde, aparecieron los primeros registros chinos sobre los movimientos de Marte antes de la fundación de la dinastía Zhou (1045 a. C.). Los astrónomos babilónicos realizaron observaciones detalladas sobre la posición de Marte, que sirvieron para desarrollar técnicas aritméticas que predecían la posición futura del planeta. Los antiguos filósofos griegos y los astrónomos helenísticos desarrollaron un modelo geocéntrico para explicar los movimientos del planeta. Las mediciones del diámetro angular de Marte se pueden encontrar en antiguos textos griegos e indios. En el siglo XVI, Nicolás Copérnico propuso un modelo heliocéntrico para el sistema solar en el que los planetas siguen órbitas circulares alrededor del Sol. Esto fue revisado por Johannes Kepler, quien pudo ajustar la órbita elíptica de Marte a los datos observacionales. La primera observación telescópica de Marte fue realizada por Galileo Galilei en 1610. Un siglo después, los astrónomos descubrieron distintas características del albedo del planeta, incluyendo el punto negro de Syrtis Major y las capas polares. Fueron capaces de determinar el período de rotación del planeta y la inclinación axial. Estas observaciones se hicieron principalmente durante los intervalos de tiempo en el que el planeta estaba situado en oposición al Sol, en los cuales Marte se acercó más a la Tierra. A principios del siglo XIX, mejores telescopios permitieron que las características del albedo marciano fueran mapeadas en detalle. El primer mapa crudo de Marte fue publicado en 1840, seguido por mapas más refinados a partir de 1877 en adelante. Cuando los astrónomos creyeron equivocadamente que habían detectado agua en la atmósfera marciana, la idea de la existencia de vida en Marte se popularizó entre el público. Percival Lowell creía que se podía ver una red de canales artificiales en Marte.​ Estas características lineales demostraron posteriormente ser una ilusión óptica, y se demostró que la atmósfera era demasiado delgada para soportar un entorno parecido a la Tierra. Se han observado nubes amarillas en Marte desde la década de 1870. Eugène Antoniadi sugirió que se debían a arena o polvo que soplaba el viento. Durante la década de 1920, se midió el rango de temperatura de la superficie marciana; varió de –85 a 7 °C. Se encontró que la atmósfera planetaria era árida con solo trazos de oxígeno y agua. En 1947, Gerard Kuiper demostró que la fina atmósfera marciana contenía mucho dióxido de carbono; aproximadamente el doble de la cantidad encontrada en la atmósfera de la Tierra. La primera nomenclatura estándar para las características del albedo de Marte fue adoptada en 1960 por la Unión Astronómica Internacional. Desde la década de 1960, múltiples naves espaciales robóticas han sido enviadas para explorar a Marte desde la órbita y la superficie. El descubrimiento de meteoritos en la Tierra originados en Marte permitieron realizar un examen de laboratorio sobre las condiciones químicas en el planeta. (es)
  • Les premières traces de l'histoire de l'observation de Mars, c'est-à-dire l'observation de la planète Mars depuis la Terre, remontent à l'époque des astronomes de l'Égypte antique, au IIe millénaire av. J.-C. Les premiers écrits chinois à propos des mouvements de la planète rouge datent d'avant la fondation de la dynastie Zhou (1045 av. J.-C.). Des observations détaillées des positions de Mars furent faites par les astronomes babyloniens qui perfectionnèrent des techniques d'arithmétique afin de prévoir les futures positions de la planète. Les philosophes de la Grèce antique et les astronomes de l'époque hellénistique développèrent des modèles géocentriques pour expliquer ces mouvements. Les astronomes indiens et arabes, quant à eux, estimèrent la taille de Mars et sa distance par rapport à la Terre. Au XVIe siècle, Nicolas Copernic proposa un modèle héliocentrique pour le Système solaire dans lequel les planètes suivaient des orbites circulaires autour du Soleil. Ce modèle fut corrigé par Johannes Kepler, donnant à Mars une orbite elliptique, en adéquation avec les données astronomiques de l'époque. La première observation de Mars au télescope fut réalisée en 1610 par Galilée. En un siècle, les astronomes découvrirent les principales formations d'albédo de la planète comme la tache sombre de Syrtis Major Planum ou les étendues de glace situées aux pôles (Planum Australe et Planum Boreum). Et lorsque Mars se rapprochait le plus possible de la Terre (durant son opposition avec le Soleil), ils furent capables de donner l'inclinaison et la période de rotation de la planète. Le perfectionnement des télescopes au début du XIXe siècle permit de cartographier en détail les formations d'albédo martiennes permanentes. La première carte de Mars, grossière, fut publiée en 1840, suivie par d'autres cartes plus détaillées en 1877. Quand les astronomes pensèrent, à tort, qu'ils avaient détecté la signature spectroscopique de l'eau dans l'atmosphère martienne, l'hypothèse d'une vie martienne devint populaire auprès du grand public. Cette idée fut alimentée par la découverte des canaux martiens par Percival Lowell, supposés être des canaux artificiels d'irrigation. Mais ces canaux se révélèrent être en réalité des illusions d'optique et l’atmosphère se révéla trop mince pour abriter un environnement similaire à celui de la Terre. Les nuages jaunes de Mars furent observés depuis les années 1870, l'astronome Eugène Antoniadi suggérant qu'il s'agissait de poussière ou de sable soufflé par le vent. Durant les années 1920, la température de Mars fut mesurée entre -85 et 7 °C et l'atmosphère fut jugée trop aride, composée seulement de traces d'oxygène et d'eau. En 1947, Gerard Kuiper montra que la fine atmosphère martienne contenait beaucoup de dioxyde de carbone, près du double de la quantité trouvée dans l'atmosphère terrestre. La première nomenclature standardisée pour les formations d'albédo martiennes fut adoptée en 1960 par l'Union astronomique internationale. Depuis les années 1960, Mars fait l'objet de multiples missions robotisées, explorant la planète depuis son orbite et sa surface. La planète reste cependant sous l'observation d'appareils basés au sol ou en orbite autour de la Terre, utilisant une large gamme du spectre électromagnétique. La découverte sur Terre de météorites provenant de Mars a permis d'étudier en laboratoire l’environnement chimique de la planète. (fr)
  • Tá stair fhada ag baint le réadóireacht Mharsa. Is fada an lá ó thosaigh na daoine ag caint agus ag scríobh faoi thuras a thabhairt ar Mhars, go háirithe nuair a tháinig an tuiscint acu nach ponc solais amháin a bhí ann, ach corpán damhna. Nuair a húsáideadh teileascóp den chéad uair tugadh gnéithe tíreolaíocha faoi deara a bhí cosúil le gréasán de chanálacha, agus dá bharr sin is iomaí alt agus scéal a cumadh faoi shibhialtachtaí aduaine agus faoi chogaí idir na plainéid, agus rinneadh go leor scannán ficsean eolaíochta bunaithe ar na scéalta sin. De réir a chéile, áfach, agus na teileascóip agus an teicneolaíocht eile bhreathnóireachta ag dul i bhfeabhas, tuigeadh nach raibh i gceist leis na canálacha ach iomrall súl. Ní fheicfeá iad ar aon mhapa comhaimseartha de Mhars. Ón taobh eile de, is léir go bhfuil tírdhreacha millteanacha ar Mhars nach dtiocfá ar a leithéid ar dhroim an Domhain, ar nós na gcainneon móra ar a dtugtar . Tá an sliabh is airde sa Ghrianchóras suite ar Mhars freisin, mar atá, Olympus Mons, agus é leathmhíle de chiliméadair ar trastomhas agus seacht gciliméadar fichead ar airde. Táthar ag súil le fada an lá go dtabharfaidh daoine cuairt ar an bpláinéad seo, a bhíonn níos cóngaraí don Domhan de ghnáth ná pláinéad ar bith eile i gCóras na Gréine, roimh lár na haoise seo, sula dtéitear ar aghaidh go ceann ar bith eile. Chuir údarás Spáis Mheiriceá, NASA, spáslong (spástaiscéalaí gan daoine) go Mars sa bhliain 1965 (Mariner 4) a rinne an-mhapáil ar Mhars. Ina dhiaidh sin, thuirling dhá spástaiscéalaí de shraith Viking air sa bhliain 1976, rud a chuir go mór leis an eolas a bhí ag na daoine faoin bpláinéad, nó b'ansin a chonaic an cine daonna an chéad radharcra ó dhromchla Mharsa. Cuireadh spáslonga gan daoine go Mars ó Mheiriceá agus ón Eoraip sa bhliain 2004 agus is mó an fhianaise atá ann anois go bhfuil roinnt uisce faoin talamh sa phláinéad. Cé go bhfuil Mars i bhfad níos lú ná an Domhan tá an oiread céanna talún ann mar nach bhfuil aigéan ar bith ar a dhromchla. (ga)
  • 火星の観測史(かせいのかんそくし)とは、火星観測の歴史である。本項目では紀元前2千年紀の古代エジプト天文学から遡って火星の観測史を説明する。 (ja)
  • Історія вивчення Марса — це історико-науковий процес збору, систематизації та зіставлення даних про четверту планету Сонячної системи. Процес вивчення охоплює різні галузі знання, в тому числі астрономію, біологію, планетологію тощо. (uk)
  • 火星观测历史是关于火星观测记录在册的历史。 早期的火星观测记录可以追溯到公元前两千年古埃及天文学家的时代。 中国关于火星运动的记录出现在周朝建立之前(公元前1045年)。 巴比伦天文学家对火星的位置进行了详细的观测,他们发明了算术技术来预测火星的未来位置。 古希腊哲学家和天文学家发明了地心说来解释行星的运动。 在古希腊和古印度文献中可以找到对火星角直径的测量相关记载。 16世纪,尼古拉·哥白尼提出了太阳系的日心说,这个模型提出行星沿着环绕太阳的圆形轨道运行。 约翰内斯 · 开普勒对此进行了修正,得出了一条更符合观测数据的火星椭圆轨道。 1610年伽利略第一次用望远镜观测火星。 在一个世纪内,天文学家发现了这颗行星上明显的反照率特征,包括黑色的大瑟提斯高原和极地冰盖。 他们能够确定行星的自转周期和轴向倾斜。 这些观测主要是在火星与太阳处于相对位置的时间间隔内进行的,在这个时间间隔内,地球离火星最近。19世纪早期发明的高级望远镜使得人们能够详细绘制火星永恒的反照率特征。1840年 第一张粗略的火星地图出版,1877年之后绘制出了更精确的地图。 当天文学家误以为他们已经探测到了火星大气层上水的光谱特征时,火星上存在生命的说法逐渐流行起来。 珀西瓦尔 · 洛厄尔相信他可以看到一个人造火星运河。 这些线性特征后来被证明是视错觉,大气层太薄,不具备类似地球的行星适居性。 自19世纪70年代以来,人们就观测到了火星上的黄色云层,欧仁·米歇尔·安东尼亚第认为这些云层是被风吹起的沙子或尘埃。 20世纪20年代,测量出了火星表面温度从 -85到7摄氏度(- 121到45华氏度)。 并且大气层是干旱的,只有微量的氧气和水。 1947年,杰拉德·柯伊伯发现薄薄的火星大气层星云中含有大量的二氧化碳,大约是地球大气中二氧化碳含量的两倍。 火星反照率特征是在1960年由国际天文联会第一次正式命名。 自20世纪60年代以来,已经发射了多枚机器人航天器从运行轨道和火星表面探测火星。 这颗行星一直在地面和太空仪器大范围的电磁波谱的监视之下。 通过在地球上发现的火星陨石,实验室能够对火星的化学条件进行研究。 1590年10月13日,德国天文学家梅斯特林观察到金星掩星火星。 他的一个学生,约翰内斯 · 开普勒,很快成为哥白尼体系的信徒。 完成学业后,开普勒成为丹麦贵族和天文学家第谷 · 布拉赫的助手。 随着获得第谷详细的火星观测资料的许可,开普勒开始着手用数学方法组装一个替代普尔滕尼克表。 在多次未能按照哥白尼学说的要求将火星的运动适应到一个圆形轨道之后,他成功地将第谷的观察结果进行了匹配,假设轨道是一个椭圆,而太阳位于其中一个焦点上。 他的模型成为开普勒行星运动定律的基础,这些定律在他的多卷本著作《天文学缩影》(Epitome Astronomiae Copernicanae)中发表于1615年至1621年间。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25998318 (xsd:integer)
dbo:wikiPageLength
  • 72036 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1108749810 (xsd:integer)
dbo:wikiPageWikiLink
dbp:align
  • left (en)
  • right (en)
dbp:alt
  • A shaded drawing of Martian albedo features is shown in a horizontal sequence of sinusoidal projections. The map is marked up with named features. (en)
  • A cylindrical projection map of mars showing light and dark regions accompanied by various linear features. The major features are labelled. (en)
  • A rectangular grid overlays meandering patterns of light and dark. Selected regions are labelled with names. (en)
  • Two disks show darker patches connected by linear features. (en)
dbp:caption
  • 1892 (xsd:integer)
  • Mars sketched as observed by Lowell sometime before 1914. (en)
  • Map of Mars by Giovanni Schiaparelli, compiled between 1877 and 1886, showing canali features as fine lines (en)
  • A later version of Proctor's map of Mars, published in 1905 (en)
dbp:colwidth
  • 30 (xsd:integer)
dbp:direction
  • vertical (en)
dbp:image
  • Giovanni map mars.jpg (en)
  • Lowell Mars channels.jpg (en)
  • Niesten Mars globe segments.jpg (en)
  • Proctor Mars Map.jpg (en)
dbp:width
  • 200 (xsd:integer)
  • 225 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • 火星の観測史(かせいのかんそくし)とは、火星観測の歴史である。本項目では紀元前2千年紀の古代エジプト天文学から遡って火星の観測史を説明する。 (ja)
  • Історія вивчення Марса — це історико-науковий процес збору, систематизації та зіставлення даних про четверту планету Сонячної системи. Процес вивчення охоплює різні галузі знання, в тому числі астрономію, біологію, планетологію тощо. (uk)
  • يمتد تاريخ رصد المريخ للفلكيين المصريين في الألفية الثانية قبل الميلاد. وهناك أيضًا سجلات صينية عن تحركات المريخ ترجع إلى ما قبل تأسيس مملكة تشو (1045 ق.م). وقد قام فلكيون بابليون بتسجيل ملاحظات عن موقع المريخ بالتفصيل، وطوّر الفلكيون أيضًا تقنيات رياضية تفيد في التنبؤ بموقع المريخ في المستقبل. وكذلك طوّر الفلاسفة اليونانيون القدماء والفلكيون الهيلنيون نموذجًا فلكيًا يحتل كوكب الأرض فيه المركز، واستخدموه في تفسير تحركات المريخ. وكذلك قام الفلكيون الهنود والفلكيون المسلمون بتقدير حجم المريخ والمسافة بينه وبين الأرض. وفي القرن السادس عشر، قدم نيكولاس كوبرنيكوس نموذجًا فلكيًا تحتل الشمس فيه مركز المجموعة الشمسية، وتدور الكواكب في هذا النموذج في مدارات دائرية حول الشمس. وقد راجع يوهانس كيبلر هذا النموذج، وخلص إلى أن مدار المريخ هو مدار إهليجي، وهذا يتوافق بشكل أكبر مع بيانات الرصد التي توفرت ح (ar)
  • La història de l'observació de Mart tracta sobre la història registrada de l'observació del planeta Mart feta pels humans. Alguns dels primers registres de l'observació de Mart es remunten a l'era dels antics astrònoms egipcis del 2n mil·lenni aC. L'astronomia xinesa també va estudiar els moviments de Mart abans de la fundació de la dinastia Zhou (1045 aC). Els astrònoms babilonis havien portat a terme observacions detallades de la posició de Mart, tot i desenvolupant tècniques aritmètiques per predir la posició futura del planeta. Els filòsofs grecs antics i els astrònoms de l'antiga Grècia van desenvolupar una teoria geocèntrica per explicar els moviments del planeta. Les mesures del diàmetre angular de Mart ja es podien trobar en textos de l'antiga astronomia india. (ca)
  • Die nachgewiesene Geschichte der Marsbeobachtung geht zurück bis in die Zeit der Astronomie im Alten Ägypten im 2. Jahrtausend v. Chr. Chinesische Aufzeichnungen über die Bewegungen des Mars erschienen vor der Gründung der Zhou Dynasty (1045 v. Chr.). Genaue Beobachtungen der Position des Mars geschahen durch babylonische Astronomen, die arithmetische Methoden entwickelten, um die zukünftige Position des Planeten vorherzusagen. Die alten griechischen Philosophen und Astronomen entwickelten ein geozentrisches Weltbild, um die Planetenbewegung vorherzusagen. (de)
  • Los primeros registros de la observación de Marte se remontan a la era de los antiguos astrónomos egipcios en el II milenio a. C. Más tarde, aparecieron los primeros registros chinos sobre los movimientos de Marte antes de la fundación de la dinastía Zhou (1045 a. C.). Los astrónomos babilónicos realizaron observaciones detalladas sobre la posición de Marte, que sirvieron para desarrollar técnicas aritméticas que predecían la posición futura del planeta. Los antiguos filósofos griegos y los astrónomos helenísticos desarrollaron un modelo geocéntrico para explicar los movimientos del planeta. Las mediciones del diámetro angular de Marte se pueden encontrar en antiguos textos griegos e indios. En el siglo XVI, Nicolás Copérnico propuso un modelo heliocéntrico para el sistema solar en el que (es)
  • The history of Mars observation is about the recorded history of observation of the planet Mars. Some of the early records of Mars' observation date back to the era of the ancient Egyptian astronomers in the 2nd millennium BCE. Chinese records about the motions of Mars appeared before the founding of the Zhou Dynasty (1045 BCE). Detailed observations of the position of Mars were made by Babylonian astronomers who developed arithmetic techniques to predict the future position of the planet. The ancient Greek philosophers and Hellenistic astronomers developed a geocentric model to explain the planet's motions. Measurements of Mars' angular diameter can be found in ancient Greek and Indian texts. In the 16th century, Nicolaus Copernicus proposed a heliocentric model for the Solar System in wh (en)
  • Tá stair fhada ag baint le réadóireacht Mharsa. Is fada an lá ó thosaigh na daoine ag caint agus ag scríobh faoi thuras a thabhairt ar Mhars, go háirithe nuair a tháinig an tuiscint acu nach ponc solais amháin a bhí ann, ach corpán damhna. Nuair a húsáideadh teileascóp den chéad uair tugadh gnéithe tíreolaíocha faoi deara a bhí cosúil le gréasán de chanálacha, agus dá bharr sin is iomaí alt agus scéal a cumadh faoi shibhialtachtaí aduaine agus faoi chogaí idir na plainéid, agus rinneadh go leor scannán ficsean eolaíochta bunaithe ar na scéalta sin. De réir a chéile, áfach, agus na teileascóip agus an teicneolaíocht eile bhreathnóireachta ag dul i bhfeabhas, tuigeadh nach raibh i gceist leis na canálacha ach iomrall súl. Ní fheicfeá iad ar aon mhapa comhaimseartha de Mhars. Ón taobh eile de (ga)
  • Les premières traces de l'histoire de l'observation de Mars, c'est-à-dire l'observation de la planète Mars depuis la Terre, remontent à l'époque des astronomes de l'Égypte antique, au IIe millénaire av. J.-C. Les premiers écrits chinois à propos des mouvements de la planète rouge datent d'avant la fondation de la dynastie Zhou (1045 av. J.-C.). Des observations détaillées des positions de Mars furent faites par les astronomes babyloniens qui perfectionnèrent des techniques d'arithmétique afin de prévoir les futures positions de la planète. Les philosophes de la Grèce antique et les astronomes de l'époque hellénistique développèrent des modèles géocentriques pour expliquer ces mouvements. Les astronomes indiens et arabes, quant à eux, estimèrent la taille de Mars et sa distance par rapport (fr)
  • 火星观测历史是关于火星观测记录在册的历史。 早期的火星观测记录可以追溯到公元前两千年古埃及天文学家的时代。 中国关于火星运动的记录出现在周朝建立之前(公元前1045年)。 巴比伦天文学家对火星的位置进行了详细的观测,他们发明了算术技术来预测火星的未来位置。 古希腊哲学家和天文学家发明了地心说来解释行星的运动。 在古希腊和古印度文献中可以找到对火星角直径的测量相关记载。 16世纪,尼古拉·哥白尼提出了太阳系的日心说,这个模型提出行星沿着环绕太阳的圆形轨道运行。 约翰内斯 · 开普勒对此进行了修正,得出了一条更符合观测数据的火星椭圆轨道。 1610年伽利略第一次用望远镜观测火星。 在一个世纪内,天文学家发现了这颗行星上明显的反照率特征,包括黑色的大瑟提斯高原和极地冰盖。 他们能够确定行星的自转周期和轴向倾斜。 这些观测主要是在火星与太阳处于相对位置的时间间隔内进行的,在这个时间间隔内,地球离火星最近。19世纪早期发明的高级望远镜使得人们能够详细绘制火星永恒的反照率特征。1840年 第一张粗略的火星地图出版,1877年之后绘制出了更精确的地图。 当天文学家误以为他们已经探测到了火星大气层上水的光谱特征时,火星上存在生命的说法逐渐流行起来。 珀西瓦尔 · 洛厄尔相信他可以看到一个人造火星运河。 这些线性特征后来被证明是视错觉,大气层太薄,不具备类似地球的行星适居性。 (zh)
rdfs:label
  • تاريخ رصد المريخ (ar)
  • Història de l'observació de Mart (ca)
  • Geschichte der Marsbeobachtung (de)
  • Historia de la observación de Marte (es)
  • Réadóireacht stairiúil Mharsa (ga)
  • History of Mars observation (en)
  • Histoire de l'observation de Mars (fr)
  • 火星の観測史 (ja)
  • 火星观测历史 (zh)
  • Історія вивчення Марса (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License