An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.

Property Value
dbo:abstract
  • Kategorická logika je odvětví matematiky, v němž jsou nástroje a koncepty z teorie kategorií aplikovány na studium matematické logiky. Je pozoruhodná svými vazbami na teoretickou informatiku. V širším smyslu představuje kategorická logika syntaxi i sémantiku kategorií a pomocí funktorů. Kategorická logika poskytuje bohaté koncepční pozadí pro konstrukce v logice a teorii typů. Obor je rozpoznatelný v tomto rámci přibližně od roku 1970. (cs)
  • Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970. (en)
  • Lógica categórica é uma ramificação da teoria categórica dentro da matemática, adjacente a lógica matemática, mas mais notável pela sua conexão com a teoria da computação. Em termos gerais, lógica categórica representa tanto sintaxe e semântica por uma categoria, e uma interpretação por um functor. O framework categórico propicia um rico contexto conceitual para as construções lógicas e tipo-teóricas. O assunto tem sido reconhecido nestes termos desde 1970. (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1063799 (xsd:integer)
dbo:wikiPageLength
  • 10268 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110870560 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Kategorická logika je odvětví matematiky, v němž jsou nástroje a koncepty z teorie kategorií aplikovány na studium matematické logiky. Je pozoruhodná svými vazbami na teoretickou informatiku. V širším smyslu představuje kategorická logika syntaxi i sémantiku kategorií a pomocí funktorů. Kategorická logika poskytuje bohaté koncepční pozadí pro konstrukce v logice a teorii typů. Obor je rozpoznatelný v tomto rámci přibližně od roku 1970. (cs)
  • Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970. (en)
  • Lógica categórica é uma ramificação da teoria categórica dentro da matemática, adjacente a lógica matemática, mas mais notável pela sua conexão com a teoria da computação. Em termos gerais, lógica categórica representa tanto sintaxe e semântica por uma categoria, e uma interpretação por um functor. O framework categórico propicia um rico contexto conceitual para as construções lógicas e tipo-teóricas. O assunto tem sido reconhecido nestes termos desde 1970. (pt)
rdfs:label
  • Categorical logic (en)
  • Kategorická logika (cs)
  • Lógica categórica (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License