In category theory, a natural numbers object (NNO) is an object endowed with a recursive structure similar to natural numbers. More precisely, in a category E with a terminal object 1, an NNO N is given by: 1. * a global element z : 1 → N, and 2. * an arrow s : N → N, such that for any object A of E, global element q : 1 → A, and arrow f : A → A, there exists a unique arrow u : N → A such that: 1. * u ∘ z = q, and 2. * u ∘ s = f ∘ u. In other words, the triangle and square in the following diagram commute. 1. * ⊢ u (z) = q 2. * y ∈E N ⊢ u (s y) = f (u (y))
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |