This HTML5 document contains 89 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n20https://global.dbpedia.org/id/
dbpedia-hehttp://he.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ukhttp://uk.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-cshttp://cs.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n21http://www.lohar.com/researchpdf/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Bézout_domain
rdfs:label
Bézout domain ベズー整域 Кольцо Безу Bézoutův obor Кільце Безу Anneau de Bézout 베주 정역 Dominio di Bézout
rdfs:comment
가환대수학에서 베주 정역(Bézout整域, 영어: Bézout domain)은 베주 항등식을 만족시키는 정역이다. 数学において、ベズー整域 (Bézout domain) は2つの主イデアルの和が再び主イデアルになるような整域である。このことが意味するのは、元の各組に対してベズーの等式 (Bézout identity) が成り立ち、すべての有限生成イデアルは単項であるということである。任意の単項イデアル整域 (PID) はベズー整域だが、ベズー整域はネーター環とは限らないので、有限生成でないイデアルをもつかもしれない(これは明らかに PID でない)。そうであれば、一意分解整域 (UFD) ではないが、なおGCD整域である。ベズー整域の理論は PID の性質の多くを、ネーター性を要求せずに、保つ。ベズー整域はフランス人数学者 Étienne Bézout にちなんで名づけられている。 Bézoutův obor je v matematice, zejména v algebře, označení pro takový obor integrity, ve kterém je součet dvou hlavních ideálů také hlavním ideálem. Z toho plyne zejména jednak to, že pro každé dva prvky daného oboru platí Bézoutova rovnost, jednak že každý konečně generovaný ideál je také hlavní. Každou z těchto podmínek lze použít zároveň jako definiční podmínku Bézoutova oboru. Кільце Безу (назване на честь французького математика Етьєна Безу) — область цілісності, в якій кожен скінченнопорождений ідеал є головним. З цього визначення випливає, що кільце Безу нетерове тоді і тільки тоді, коли воно є кільцем головних ідеалів, узагальненням яких і є кільця Безу. Кольцо Безу (названное по имени французского математика Этьена Безу) — это всякая область целостности, в которой каждый конечнопорождённый идеал является главным. Из этого определения следует, что кольцо Безу нётерово тогда и только тогда, когда оно кольцо главных идеалов, обобщением которых кольца Безу и являются. In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout. Nella teoria degli anelli, un dominio di Bézout è una forma di dominio di Prüfer. È un dominio d'integrità in cui la somma di due ideali principali è ancora un ideale principale. Questo significa che un'identità di Bézout vale per ogni coppia di elementi, e che ogni ideale finitamente generato è principale. Ogni dominio ad ideali principali (PID) è un dominio di Bézout, ma non è necessario che quest'ultimo sia un anello noetheriano, quindi potrebbe avere degli ideali non finitamente generati (che ovviamente esclude dall'essere un PID); se è così, allora non è un dominio a fattorizzazione unica (UFD), ma rimane un dominio MCD (cioè ogni coppia di elementi ha un massimo comun divisore). La teoria dei domini di Bézout conserva molte proprietà dei PID, senza richiedere la proprietà noetheriana En algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre.
dcterms:subject
dbc:Ring_theory dbc:Commutative_algebra
dbo:wikiPageID
3131407
dbo:wikiPageRevisionID
813142835
dbo:wikiPageWikiLink
dbr:Local_ring dbr:French_people dbr:Mathematics dbr:Total_order dbc:Ring_theory dbr:Entire_function dbr:Prüfer_domain dbr:Bézout_identity dbr:Principal_ideal dbr:Principal_ideal_domain dbr:Unique_factorization_domain dbr:Associated_element dbr:Maximal_ideal dbr:Ore_domain dbr:Noetherian_ring dbr:Finitely_generated_module dbr:Greatest_common_divisor dbr:Bézout's_identity dbr:Mathematician dbr:Bézout_ring dbr:Valuation_ring dbr:Dedekind_domain dbr:Irreducible_element dbr:Atomic_domain dbr:Abelian_group dbr:Étienne_Bézout dbr:Prime_element dbr:I._Kaplansky dbr:Prime_ideal dbc:Commutative_algebra dbr:Linear_combination dbr:Integral_domain dbr:Semifir dbr:Ascending_chain_condition_for_principal_ideals dbr:Localization_of_a_ring dbr:Hereditary_ring dbr:Field_of_fractions dbr:GCD_domain dbr:Algebraic_integer
dbo:wikiPageExternalLink
n21:bezout_rings_and_their_subrings.pdf
owl:sameAs
wikidata:Q2386260 dbpedia-it:Dominio_di_Bézout dbpedia-he:תחום_בזו dbpedia-cs:Bézoutův_obor freebase:m.08tfxy dbpedia-ru:Кольцо_Безу dbpedia-ko:베주_정역 dbpedia-uk:Кільце_Безу n20:2FaV2 dbpedia-ja:ベズー整域 dbpedia-fr:Anneau_de_Bézout
dbp:wikiPageUsesTemplate
dbt:= dbt:Reflist dbt:Citation dbt:Springer
dbp:id
p/b015990
dbp:title
Bezout ring
dbo:abstract
En algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. 数学において、ベズー整域 (Bézout domain) は2つの主イデアルの和が再び主イデアルになるような整域である。このことが意味するのは、元の各組に対してベズーの等式 (Bézout identity) が成り立ち、すべての有限生成イデアルは単項であるということである。任意の単項イデアル整域 (PID) はベズー整域だが、ベズー整域はネーター環とは限らないので、有限生成でないイデアルをもつかもしれない(これは明らかに PID でない)。そうであれば、一意分解整域 (UFD) ではないが、なおGCD整域である。ベズー整域の理論は PID の性質の多くを、ネーター性を要求せずに、保つ。ベズー整域はフランス人数学者 Étienne Bézout にちなんで名づけられている。 Кільце Безу (назване на честь французького математика Етьєна Безу) — область цілісності, в якій кожен скінченнопорождений ідеал є головним. З цього визначення випливає, що кільце Безу нетерове тоді і тільки тоді, коли воно є кільцем головних ідеалів, узагальненням яких і є кільця Безу. In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout. Кольцо Безу (названное по имени французского математика Этьена Безу) — это всякая область целостности, в которой каждый конечнопорождённый идеал является главным. Из этого определения следует, что кольцо Безу нётерово тогда и только тогда, когда оно кольцо главных идеалов, обобщением которых кольца Безу и являются. Целостное кольцо является кольцом Безу тогда и только тогда, когда в этом кольце любые два элемента имеют наибольший общий делитель (НОД), представимый в виде их линейной комбинации. (Это условие означает, что каждый идеал с двумя образующими допускает одну образующую, из чего по индукции выводится, что каждый конечнопорождённый идеал является главным.) Представление НОДа двух элементов их линейной комбинацией часто называют тождеством Безу. 가환대수학에서 베주 정역(Bézout整域, 영어: Bézout domain)은 베주 항등식을 만족시키는 정역이다. Nella teoria degli anelli, un dominio di Bézout è una forma di dominio di Prüfer. È un dominio d'integrità in cui la somma di due ideali principali è ancora un ideale principale. Questo significa che un'identità di Bézout vale per ogni coppia di elementi, e che ogni ideale finitamente generato è principale. Ogni dominio ad ideali principali (PID) è un dominio di Bézout, ma non è necessario che quest'ultimo sia un anello noetheriano, quindi potrebbe avere degli ideali non finitamente generati (che ovviamente esclude dall'essere un PID); se è così, allora non è un dominio a fattorizzazione unica (UFD), ma rimane un dominio MCD (cioè ogni coppia di elementi ha un massimo comun divisore). La teoria dei domini di Bézout conserva molte proprietà dei PID, senza richiedere la proprietà noetheriana. I domini di Bézout devono il loro nome dal matematico francese Étienne Bézout. Bézoutův obor je v matematice, zejména v algebře, označení pro takový obor integrity, ve kterém je součet dvou hlavních ideálů také hlavním ideálem. Z toho plyne zejména jednak to, že pro každé dva prvky daného oboru platí Bézoutova rovnost, jednak že každý konečně generovaný ideál je také hlavní. Každou z těchto podmínek lze použít zároveň jako definiční podmínku Bézoutova oboru.
gold:hypernym
dbr:Form
prov:wasDerivedFrom
wikipedia-en:Bézout_domain?oldid=813142835&ns=0
dbo:wikiPageLength
9267
foaf:isPrimaryTopicOf
wikipedia-en:Bézout_domain