dbo:abstract
|
- En geometrio, la riproĉa 24-ĉelo estas konveksa uniforma plurĉelo komponita el 120 regulaj kvaredraj kaj 24 regulaj dudekedraj ĉeloj. Kvin kvaredroj kaj tri dudekedroj kuniĝas je ĉiu vertico. Entute ĝi havas 3600 triangulajn edrojn, 3600 laterojn kaj 720 verticojn. Ĝi estas unu el tri duonregulaj plurĉeloj konsistantaj el ĉeloj de du aŭ pli multaj specoj kiuj estas platonaj solidoj (la aliaj du duonregulaj plurĉeloj estas la rektigita 5-ĉelo kaj la rektigita 600-ĉelo). (eo)
- In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra. Topologically, under its highest symmetry, [3+,4,3], as an alternation of a truncated 24-cell, it contains 24 pyritohedra (an icosahedron with Th symmetry), 24 regular tetrahedra, and 96 triangular pyramids. (en)
- Курно́сый двадцатичетырёхъяче́йник — четырёхмерный многогранник, один из 47 непризматических выпуклых и один из 3 (так как составлен из двух разных видов платоновых тел). Впервые описан в статье 1900 года , который назвал многоячейник тетрикосаэдриком (tetricosahedric), поскольку его ячейки — тетраэдры и икосаэдры. Также известен как курносый икоситетрахор, полукурносый полиоктаэдр (англ. semi-snub polyoctahedron). (ru)
|
rdfs:comment
|
- En geometrio, la riproĉa 24-ĉelo estas konveksa uniforma plurĉelo komponita el 120 regulaj kvaredraj kaj 24 regulaj dudekedraj ĉeloj. Kvin kvaredroj kaj tri dudekedroj kuniĝas je ĉiu vertico. Entute ĝi havas 3600 triangulajn edrojn, 3600 laterojn kaj 720 verticojn. Ĝi estas unu el tri duonregulaj plurĉeloj konsistantaj el ĉeloj de du aŭ pli multaj specoj kiuj estas platonaj solidoj (la aliaj du duonregulaj plurĉeloj estas la rektigita 5-ĉelo kaj la rektigita 600-ĉelo). (eo)
- Курно́сый двадцатичетырёхъяче́йник — четырёхмерный многогранник, один из 47 непризматических выпуклых и один из 3 (так как составлен из двух разных видов платоновых тел). Впервые описан в статье 1900 года , который назвал многоячейник тетрикосаэдриком (tetricosahedric), поскольку его ячейки — тетраэдры и икосаэдры. Также известен как курносый икоситетрахор, полукурносый полиоктаэдр (англ. semi-snub polyoctahedron). (ru)
- In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra. (en)
|