In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations

Property Value
dbo:abstract
  • في الرياضيات، المعادلة الوسيطية أو المعادلة البارامترية هي طريقة تعريف علاقة رياضية بدلالة وسائط أو بارامترات مما يجعل العلاقة الأساسية في صورة أبسط، وأحد الأمثلة على المعادلات الوسيطية هو استخدام وسيط زمني لتحديد موضع جسيم متحرك أو سرعته. (ar)
  • En matemàtiques les equacions paramètriques són un mètode de definir una funció que fa servir paràmetres. Un exemple cinemàtic simple és quan es fa servir un paràmetre temporal per determinar la posició, velocitat, i altra informació sobre un cos en moviment. De manera abstracta, es dóna una relació, en forma d'equació, i es presenta també com la imatge per la funció d'elements com Rn. És per això que s'anomena també una mica més acuradament com una representació paramètrica. És part de la . (ca)
  • Parametrizace, parametrické vyjádření neboli parametrické rovnice geometrického útvaru (křivky, plochy) je zobrazení, které určuje souřadnice bodů tohoto útvaru jako funkce parametru. Opakem je útvaru například v podobě F(x,y) = 0. Z parametrického vyjádření je snadné získat jednotlivé body, naopak implicitní rovnice útvaru umožňuje snadno testovat, zda daný bod patří do útvaru. Parametrické vyjádření geometrického útvaru není jednoznačné. Příkladem může být parametrická rovnice křivky v rovině, jež se definuje takto: Nechť x=x(t), y=y(t) spojité na T=[α,β] a jsou po částech diferencovatelné na (α,β). Pak zobrazení nazveme křivkou danou parametricky. Jednotková kružnice v rovině tak má parametrické vyjádření , zatímco implicitní vyjádření stejné křivky je . Z prvního vyjádření tak lze bezprostředně získat body na kružnici, například pro t = 0,3 je to bod (cos 0,3; sin 0,3). Naopak z druhého vyjádření lze bezprostředně určit, že bod (0,6; 0,8) leží na kružnici, zatímco (0,4; 0,9) nikoli, protože 0,4² + 0,9² = 0,97 ≠ 1. V tomto článku byl použit překlad textu z článku Parameterdarstellung na německé Wikipedii. (cs)
  • Στα μαθηματικά, οι παραμετρικές εξισώσεις ορίζουν μια ομάδα ποσοτήτων ως συναρτήσεις μιας ή περισσότερων ανεξάρτητων μεταβλητών που ονομάζονται παράμετροι. Οι παραμετρικές εξισώσεις χρησιμοποιούνται συνήθως για να εκφράσουν τις συντεταγμένες των σημείων που συνθέτουν ένα γεωμετρικό αντικείμενο, όπως μια καμπύλη ή επιφάνεια, σε κάθε περίπτωση οι εξισώσεις συλλογικά ονομάζονται παραμετρική αναπαράσταση ή παραμετροποίηση του αντικειμένου. Για παράδειγμα, οι εξισώσεις έχουν τη μορφή μιας παραμετρικής αναπαράστασης και συγκεκριμένα ενός μοναδιαίου κύκλου, όπου t είναι η παράμετρος. Εκτός από καμπύλες και επιφάνειες, οι παραμετρικές εξισώσεις μπορούν να περιγράψουν τις πολλαπλές και αλγεβρικές ποικιλίες της τριτοβάθμιας διάστασης, με τον αριθμό των παραμέτρων να είναι ίσος με τη διάσταση του συλλέκτη ή την ποικιλία και ο αριθμός των εξισώσεων είναι ίσος με τη διάσταση του χώρου στον οποίο η πολλαπλή ή ποικιλία θεωρείται (για καμπύλες η διάσταση είναι μία και μία παράμετρος χρησιμοποιείται για επιφάνειες διάσταση δύο και δύο παράμετροι, κ. λπ.). Οι παραμετρικές εξισώσεις που χρησιμοποιούνται συνήθως στην κινηματική, όπου η τροχιά ενός αντικειμένου που αντιπροσωπεύεται από τις εξισώσεις ανάλογα με το χρόνο ως παράμετρο. Εξαιτίας αυτής της εφαρμογής, μόνο μια παράμετρος εμφανίζεται συχνά και ονομάζεται t ωστόσο, οι παράμετροι μπορούν να εκπροσωπούν άλλες φυσικές ποσότητες (όπως γεωμετρικές μεταβλητές) ή μπορεί να επιλεγούν αυθαίρετα για τη διευκόλυνσή σας. Οι παραμετροποιήσεις είναι μη-μοναδικές και περισσότερα από ένα σετ παραμετρικών εξισώσεων μπορούν να εκφράσουν την ίδια καμπύλη. (el)
  • Unter einer Parameterdarstellung (auch Parametrisierung oder Parametrierung) versteht man in der Mathematik eine Darstellung, bei der die Punkte einer Kurve oder Fläche als Funktion einer oder mehrerer Variablen, der Parameter, durchlaufen werden. Für die Beschreibung einer Kurve in der Ebene oder im Raum wird ein Parameter benötigt, für die Beschreibung einer Fläche ein Satz von zwei Parametern. Ein Beispiel ist die Beschreibung des Einheitskreises um den Ursprung eines kartesischen Koordinatensystems in der Ebene. Ein möglicher Parameter ist der Winkel im Koordinatenursprung (s. nebenstehendes Bild), womit man folgende Parameterdarstellung des Ortsvektors in Abhängigkeit von erhält: Die Beschreibung der Bahnkoordinaten eines bewegten Objektes in Abhängigkeit von der Zeit ist ein Beispiel einer Parameterdarstellung in der Physik. Ist eine Parameterdarstellung einer Kurve oder Fläche bekannt, kann zu jedem Parameter(satz) direkt der entsprechende Punkt der Kurve oder Fläche angegeben werden. Dagegen ist es meist schwieriger, zu entscheiden, ob ein gegebener Punkt auf der Kurve oder Fläche liegt. Kurven oder Flächen können auf unterschiedliche Art parametrisiert werden. Bei Kurven ist es oft günstig, die Bogenlänge, gemessen von einem festen Punkt aus entlang der Kurve, als Parameter zu wählen. Die Parameter von Flächen oder höherdimensionalen Gebilden werden oft so gewählt, dass die Parameterlinien orthogonal sind. Auch bei relativ einfachen Gebilden ist es nicht immer möglich, zu jeder Parametrisierung eine Parameterdarstellung der Koordinaten mit Hilfe von elementaren Funktionen zu finden, beispielsweise wenn bei einer Ellipse die Bogenlänge als Parameter gewählt wird. (de)
  • In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors: Parametric representations are generally nonunique (see the "Examples in two dimensions" section below), so the same quantities may be expressed by a number of different parameterizations. In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the dimension is one and one parameter is used, for surfaces dimension two and two parameters, etc.). Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a single parameter is often labeled t; however, parameters can represent other physical quantities (such as geometric variables) or can be selected arbitrarily for convenience. Parameterizations are non-unique; more than one set of parametric equations can specify the same curve. (en)
  • En matemáticas, un sistema de ecuaciones paramétricas permite representar una curva o superficie en el plano o en el espacio, mediante valores que recorren un intervalo de números reales, mediante una variable, llamada parámetro, considerando cada coordenada de un punto como una función dependiente del parámetro. Un ejemplo simple de la cinemática, es cuando se usa un parámetro de tiempo para determinar la posición y la velocidad de un móvil. (es)
  • In matematica l'equazione parametrica o letterale è un'equazione matematica in cui le variabili (indipendente e dipendente) sono espresse a loro volta in funzione di uno o più parametri.Un tipico parametro potrebbe essere il tempo (t): esso, in equazioni riguardanti la cinematica, è utilizzato per stabilire la velocità, l'accelerazione e altri aspetti del movimento. Il contrario di equazione parametrica è equazione numerica. (it)
  • パラメトリック方程式(パラメトリックほうていしき、英: parametric equation)とは、関数を媒介変数(パラメータ)を使って表したもの、またはその手法である。単純な運動学的例として、時間を媒介変数として位置、速度、その他の運動体に関する情報を表す場合が挙げられる。 抽象的には、関係は1つの方程式の形で表され、ユークリッド空間 Rn の項からなる関数のイメージとしても表される。したがって、より正確には媒介変数表示(英: parametric representation)として定義される。 (ja)
  • Een parametervergelijking is een wiskundige vergelijking waarmee een coördinaat van een wiskundig object, zoals een kromme, een oppervlak, een meetkundig lichaam, gegeven wordt in afhankelijkheid van een of meer parameters. De gezamenlijke parametervergelijkingen vormen de parametervoorstelling of parametrisering van het object. Met andere woorden, meestal worden -, - en -waarden uitgedrukt als functie van de parameter(s). Als er maar één parameter is, hoort bij elke parameterwaarde één punt. Dit punt zal een kromme beschrijven als die parameter vloeiend verandert, mits het continue functies zijn. Met twee parameters verkrijgt men op analoge wijze een oppervlak. (nl)
  • Równanie parametryczne – równanie, które określa daną wielkość jako funkcję jednej lub kilku zmiennych nazywanych parametrami. Np. w kinematyce często jako parametr przyjmuje się czas - za jego pomocą opisuje się współrzędne wektora położenia ciała, prędkości, pędu, momentu pędu itp., które w ogólności zależą od czasu. Równania parametryczne stosuje się też powszechnie do definicji krzywych lub powierzchni: za pomocą równań parametrycznych określa się współrzędne punktów krzywej lub powierzchni. Przy tym krzywa parametryczna jest funkcją jednego niezależnego parametru. Gdy są dwa parametry, to mamy do czynienia z powierzchnią parametryczną. (pl)
  • Equações paramétricas são um conjunto de equações que expressam um conjunto de quantidades como funções explícitas de número de variáveis independentes, conhecidas como parâmetros. Por exemplo, enquanto a equação de um círculo em coordenadas cartesianas é: um conjunto de equações paramétricas para o círculo pode ser: Um exemplo da utilidade das equações paramétricas está na cinemática, onde esse tipo de equação serve para descrever a trajetória que um objeto pode assumir ao longo do tempo, este último serve como parâmetro da equação. A noção de equação paramétrica tem sido generalizada para superfícies e variedades de mais dimensões, com o número de parâmetros igual ao número de dimensões e o número de equações sendo igual à dimensão do espaço em que o distribuidor ou variedade é considerado. Nas curvas por exemplo um parâmetro é usado, sendo a dimensão igual a um, enquanto em superfícies a dimensão é dois e dois parâmetros são utilizados. (pt)
  • Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. (ru)
  • Параметричні рівняння — метод представлення математичних функцій через параметри. Простий кінематичний приклад, коли час використовується як параметр для задання позиції, швидкості та іншої інформації про тіло в русі. (uk)
  • 參數方程(英語:parametric equation)和函數相似,都是由一些在指定的集的數,稱為參數或自變數,以決定因變數的結果。例如在運動學,參數通常是「時間」,而方程的結果是速度、位置等。 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 576108 (xsd:integer)
dbo:wikiPageLength
  • 17334 (xsd:integer)
dbo:wikiPageRevisionID
  • 973351978 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • في الرياضيات، المعادلة الوسيطية أو المعادلة البارامترية هي طريقة تعريف علاقة رياضية بدلالة وسائط أو بارامترات مما يجعل العلاقة الأساسية في صورة أبسط، وأحد الأمثلة على المعادلات الوسيطية هو استخدام وسيط زمني لتحديد موضع جسيم متحرك أو سرعته. (ar)
  • En matemàtiques les equacions paramètriques són un mètode de definir una funció que fa servir paràmetres. Un exemple cinemàtic simple és quan es fa servir un paràmetre temporal per determinar la posició, velocitat, i altra informació sobre un cos en moviment. De manera abstracta, es dóna una relació, en forma d'equació, i es presenta també com la imatge per la funció d'elements com Rn. És per això que s'anomena també una mica més acuradament com una representació paramètrica. És part de la . (ca)
  • En matemáticas, un sistema de ecuaciones paramétricas permite representar una curva o superficie en el plano o en el espacio, mediante valores que recorren un intervalo de números reales, mediante una variable, llamada parámetro, considerando cada coordenada de un punto como una función dependiente del parámetro. Un ejemplo simple de la cinemática, es cuando se usa un parámetro de tiempo para determinar la posición y la velocidad de un móvil. (es)
  • In matematica l'equazione parametrica o letterale è un'equazione matematica in cui le variabili (indipendente e dipendente) sono espresse a loro volta in funzione di uno o più parametri.Un tipico parametro potrebbe essere il tempo (t): esso, in equazioni riguardanti la cinematica, è utilizzato per stabilire la velocità, l'accelerazione e altri aspetti del movimento. Il contrario di equazione parametrica è equazione numerica. (it)
  • パラメトリック方程式(パラメトリックほうていしき、英: parametric equation)とは、関数を媒介変数(パラメータ)を使って表したもの、またはその手法である。単純な運動学的例として、時間を媒介変数として位置、速度、その他の運動体に関する情報を表す場合が挙げられる。 抽象的には、関係は1つの方程式の形で表され、ユークリッド空間 Rn の項からなる関数のイメージとしても表される。したがって、より正確には媒介変数表示(英: parametric representation)として定義される。 (ja)
  • Een parametervergelijking is een wiskundige vergelijking waarmee een coördinaat van een wiskundig object, zoals een kromme, een oppervlak, een meetkundig lichaam, gegeven wordt in afhankelijkheid van een of meer parameters. De gezamenlijke parametervergelijkingen vormen de parametervoorstelling of parametrisering van het object. Met andere woorden, meestal worden -, - en -waarden uitgedrukt als functie van de parameter(s). Als er maar één parameter is, hoort bij elke parameterwaarde één punt. Dit punt zal een kromme beschrijven als die parameter vloeiend verandert, mits het continue functies zijn. Met twee parameters verkrijgt men op analoge wijze een oppervlak. (nl)
  • Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. (ru)
  • Параметричні рівняння — метод представлення математичних функцій через параметри. Простий кінематичний приклад, коли час використовується як параметр для задання позиції, швидкості та іншої інформації про тіло в русі. (uk)
  • 參數方程(英語:parametric equation)和函數相似,都是由一些在指定的集的數,稱為參數或自變數,以決定因變數的結果。例如在運動學,參數通常是「時間」,而方程的結果是速度、位置等。 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。 (zh)
  • Parametrizace, parametrické vyjádření neboli parametrické rovnice geometrického útvaru (křivky, plochy) je zobrazení, které určuje souřadnice bodů tohoto útvaru jako funkce parametru. Opakem je útvaru například v podobě F(x,y) = 0. Z parametrického vyjádření je snadné získat jednotlivé body, naopak implicitní rovnice útvaru umožňuje snadno testovat, zda daný bod patří do útvaru. Parametrické vyjádření geometrického útvaru není jednoznačné. Jednotková kružnice v rovině tak má parametrické vyjádření , zatímco implicitní vyjádření stejné křivky je . (cs)
  • Unter einer Parameterdarstellung (auch Parametrisierung oder Parametrierung) versteht man in der Mathematik eine Darstellung, bei der die Punkte einer Kurve oder Fläche als Funktion einer oder mehrerer Variablen, der Parameter, durchlaufen werden. Für die Beschreibung einer Kurve in der Ebene oder im Raum wird ein Parameter benötigt, für die Beschreibung einer Fläche ein Satz von zwei Parametern. Die Beschreibung der Bahnkoordinaten eines bewegten Objektes in Abhängigkeit von der Zeit ist ein Beispiel einer Parameterdarstellung in der Physik. (de)
  • Στα μαθηματικά, οι παραμετρικές εξισώσεις ορίζουν μια ομάδα ποσοτήτων ως συναρτήσεις μιας ή περισσότερων ανεξάρτητων μεταβλητών που ονομάζονται παράμετροι. Οι παραμετρικές εξισώσεις χρησιμοποιούνται συνήθως για να εκφράσουν τις συντεταγμένες των σημείων που συνθέτουν ένα γεωμετρικό αντικείμενο, όπως μια καμπύλη ή επιφάνεια, σε κάθε περίπτωση οι εξισώσεις συλλογικά ονομάζονται παραμετρική αναπαράσταση ή παραμετροποίηση του αντικειμένου. Για παράδειγμα, οι εξισώσεις έχουν τη μορφή μιας παραμετρικής αναπαράστασης και συγκεκριμένα ενός μοναδιαίου κύκλου, όπου t είναι η παράμετρος. (el)
  • In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations (en)
  • Równanie parametryczne – równanie, które określa daną wielkość jako funkcję jednej lub kilku zmiennych nazywanych parametrami. Np. w kinematyce często jako parametr przyjmuje się czas - za jego pomocą opisuje się współrzędne wektora położenia ciała, prędkości, pędu, momentu pędu itp., które w ogólności zależą od czasu. (pl)
  • Equações paramétricas são um conjunto de equações que expressam um conjunto de quantidades como funções explícitas de número de variáveis independentes, conhecidas como parâmetros. Por exemplo, enquanto a equação de um círculo em coordenadas cartesianas é: um conjunto de equações paramétricas para o círculo pode ser: Um exemplo da utilidade das equações paramétricas está na cinemática, onde esse tipo de equação serve para descrever a trajetória que um objeto pode assumir ao longo do tempo, este último serve como parâmetro da equação. (pt)
rdfs:label
  • معادلة وسيطية (ar)
  • Equació paramètrica (ca)
  • Parametrizace (cs)
  • Parameterdarstellung (de)
  • Παραμετρικές εξισώσεις (el)
  • Parametric equation (en)
  • Ecuación paramétrica (es)
  • Équation paramétrique (fr)
  • パラメトリック方程式 (ja)
  • Equazione parametrica (it)
  • Parametervergelijking (nl)
  • Równanie parametryczne (pl)
  • Equação paramétrica (pt)
  • Параметрическое представление (ru)
  • Параметричне рівняння (uk)
  • 參數方程 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of