About: Basis (linear algebra)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Attribute100024264, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29

In mathematics, a set B of elements (vectors) in a vector space V is called a basis, if every element of V may be written in a unique way as a (finite) linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates on B of the vector. The elements of a basis are called basis vectors. Equivalently B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In more general terms, a basis is a linearly independent spanning set.

AttributesValues
rdf:type
rdfs:label
  • قاعدة (جبر خطي)
  • Base (àlgebra)
  • Báze (lineární algebra)
  • Basis (Vektorraum)
  • Basis (linear algebra)
  • Bazo (lineara algebro)
  • Base (álgebra)
  • Base (algèbre linéaire)
  • Basis (aljabar linear)
  • Base (algebra lineare)
  • 基底 (線型代数学)
  • 기저 (선형대수학)
  • Basis (lineaire algebra)
  • Baza (przestrzeń liniowa)
  • Base (álgebra linear)
  • Bas (linjär algebra)
  • Базис
  • Базис (математика)
  • 基 (線性代數)
rdfs:comment
  • في الجبر الخطي، قاعدةٌ (بالإنجليزية: Basis) هي مجموعة من المتجهات المستقلة خطيا، والتي بواسطة تركيبة خطية، يمكن لها أن تعبر عن أي متجه منتم إلى فضاء متجهي معين. لتكن V قاعدة ما لفضاء متجهي ما. جميع عناصر V يُمكن أن يعبر عنها بشكل وحيد بواسطة تأليفة خطية لمتجهات القاعدة. الأعداد المستعملة خلال هذه التأليفة الخطية تسمى إحداثيات المتجهة.
  • A àlgebra lineal, es diu que un conjunt ordenat B és base d'un espai vectorial V si es compleixen les condicions següents: * Tots els elements de la base B han de pertànyer a l'espai vectorial V. * Tots els elements de la base B han de ser linealment independents. * Tot element de V es pot escriure com una combinació lineal dels elements de la base B, és a dir B és un sistema generador de V.
  • Práci s vektorovými prostory i samotnými vektory lze velmi ulehčit zavedením pojmu báze vektorového prostoru (krátce jen báze, angl. basis, pl. bases). Jedná se o množinu jistým způsobem výjimečných vektorů z daného vektorového prostoru, pomocí níž jsme schopni vyjádřit libovolný vektor tohoto prostoru. Pojem báze úzce souvisí s pojmem dimenze vektorového prostoru. Zatímco dimenze nám říká, kolik parametrů potřebujeme na popsání libovolného vektoru v daném prostoru, báze je množina vektorů, ze kterých jsme schopni tento vektor sestrojit, známe-li tyto parametry.
  • En lineara algebro, bazo estas minimuma aro da vektoroj, kiuj, kiam kombinitaj, povas adresi ĉiun vektoron en donita spacon. Pli detale, bazo de vektora spaco estas aro da lineare sendependaj vektoroj, kiu generas la tutan spacon.
  • En álgebra lineal, una base es un conjunto B del espacio vectorial V si se cumplen las siguientes condiciones: * Todos los elementos de B pertenecen al espacio vectorial V. * Los elementos de B forman un sistema linealmente independiente. * Todo elemento de V se puede escribir como combinación lineal de los elementos de la base B (es decir, B es un sistema generador de V).​
  • Dalam aljabar linear, basis adalah himpunan vektor, yang dalam sebuah kombinasi linear dapat merepresentasikan setiap vektor dalam suatu ruang vektor. Tidak ada elemen dalam himpunan vektor tersebut yang dapat direpresentasikan sebagai kombinasi linear vektor-vektor lain. Basis juga dapat dianggap sebagai "sistem koordinat".
  • En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.
  • In matematica, e più precisamente in algebra lineare, la base di uno spazio vettoriale è un insieme di vettori linearmente indipendenti che generano lo spazio. In modo equivalente, ogni elemento dello spazio vettoriale può essere scritto in modo unico come combinazione lineare dei vettori appartenenti alla base. Se la base di uno spazio vettoriale è composta da un numero finito di elementi allora la dimensione dello spazio è finita. In particolare, il numero di elementi della base coincide con la dimensione dello spazio.
  • 線型代数学における基底(きてい、英: basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。
  • 선형대수학에서, 어떤 벡터 공간의 기저(基底, 영어: basis)는 그 벡터 공간을 선형생성하는 선형독립인 벡터들이다. 달리 말해, 벡터 공간의 임의의 벡터에게 선형결합으로서 유일한 표현을 부여하는 벡터들이다.
  • Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe. Uwaga: Bazy w nieskończenie wymiarowych przestrzeniach nazywane są czasami bazami Hamela (jest to częsty zwyczaj w analizie funkcjonalnej). Z drugiej strony niektórzy matematycy rezerwują nazwę baza Hamela dla dowolnej bazy przestrzeni liczb rzeczywistych jako przestrzeni liniowej nad ciałem liczb wymiernych.
  • Na álgebra linear, uma base de um espaço vectorial é um conjunto de vetores linearmente independentes que geram esse espaço.
  • En mängd sägs vara en bas för ett linjärt rum (eller vektorrum) V om den är linjärt oberoende och spänner upp V, det vill säga varje element i V är en linjärkombination av element ur basen. Det går att byta mellan baser genom basbyten. En basvektor v i ett vektorrum V med dimensionen d, är en vektor i den mängd av d stycken vektorer som bildar en bas för rummet. Basvektorerna är linjärt oberoende. Baser av stor betydelse är de som är ortogonala eller ortonormerade.
  • Ба́зисом (дав.-гр. βασις, основа) векторного простору L називається впорядкований набір векторів {e1, …, en} , якщо кожний вектор із L можна однозначно представити у вигляді лінійної комбінації: Коефіцієнти називаються координатами вектора відносно базису . Представлення вектора у вигляді лінійної комбінації базисних векторів називається розкладанням вектора по даному базису. Кількість векторів базису не залежить від вибору базисних векторів і дорівнює розмірності простору і позначається Вектори базису є лінійно незалежними.
  • 在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间射出的线性变换,可以查看这个变换作用在向量空间的一组基上的效果。掌握了,就等于掌握了对中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。
  • In der linearen Algebra ist eine Basis eine Teilmenge eines Vektorraumes, mit deren Hilfe sich jeder Vektor des Raumes eindeutig als endliche Linearkombination darstellen lässt. Die Koeffizienten dieser Linearkombination heißen die Koordinaten des Vektors bezüglich dieser Basis. Ein Element der Basis heißt Basisvektor. Wenn Verwechslungen mit anderen Basisbegriffen (z. B. der Schauderbasis) zu befürchten sind, nennt man eine solche Teilmenge auch Hamelbasis (nach Georg Hamel). Ein Vektorraum besitzt im Allgemeinen verschiedene Basen, ein Wechsel der Basis erzwingt eine Koordinatentransformation. Die Hamelbasis sollte nicht mit der Basis eines Koordinatensystems verwechselt werden, da diese Begriffe unter bestimmten Bedingungen nicht gleichgesetzt werden können (z. B. bei krummlinigen Koord
  • In mathematics, a set B of elements (vectors) in a vector space V is called a basis, if every element of V may be written in a unique way as a (finite) linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates on B of the vector. The elements of a basis are called basis vectors. Equivalently B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In more general terms, a basis is a linearly independent spanning set.
  • In de lineaire algebra is een basis van een vectorruimte een verzameling van lineair onafhankelijke vectoren die de vectorruimte voortbrengen. Een element uit een basis wordt een basisvector genoemd. Voor een gegeven basis is iedere vector uit de vectorruimte een eenduidige eindige lineaire combinatie van de basisvectoren. De coëfficiënten van deze lineaire combinatie heten de coördinaten van de vector ten opzichte van de gegeven basis. Intuïtief beschouwd is een basis een zo klein mogelijke verzameling vectoren die de hele vectorruimte voortbrengen. Een vectorruimte heeft in het algemeen meerdere bases. Ter onderscheiding van andere typen basis (die overigens meestal alleen bij oneindigdimensionale vectorruimten verschillen), wordt de hier gedefinieerde basis ook Hamelbasis (naar Georg Ha
  • Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами. В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения: В конечномерных пространствах оба определения базиса совпадают.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software