dbo:abstract
|
- En matemàtiques, un àlgebra sobre un cos és un espai vectorial proveït amb un producte vectorial bilineal. És a dir, ésuna estructura algebraica que consta d'un espai vectorial juntament amb una operació, normalment anomenada multiplicació, que combina dos vectors qualssevol per formar un tercer vector; per qualificar-se com a àlgebra, aquesta multiplicació ha de satisfer certs axiomes de compatibilitat amb l'estructura espacial vectorial donada, com la propietat distributiva. En altres paraules, una àlgebra sobre un cos és un conjunt juntament amb operacions de multiplicació, suma, i multiplicació per un escalar del cos. Es pot generalitzar aquesta idea canviant el cos d'escalars per un anell commutatiu, i així es defineix una àlgebra sobre un anell. Alguns autors fan servir el terme "àlgebra" per dir un "àlgebra associativa" unitària, però aquest article no exigirà ni associativitat ni una unitat. (ca)
- Algebra jako matematická struktura je vektorový prostor A nad tělesem F (anebo obecněji modul nad okruhem), na kterém je dána další operace násobení, které je lineární, t.j. pro . (cs)
- جبر على حقل في الرياضيات، هو فضاء متجهي مع ضرب اتجاهي اقتراني ثنائي خطي. وهذا يعني، أنه بنية جبرية مكونة من فضاء متجهي "V" جنبا إلى جنب مع عملية ثنائية مغلقة على الفضاء. حتى يتم اعتباره جبراً، يجب أن تكون هذه العملية V×V→V ملبية للبديهيات التوافقية الإضافية، مثل التوزيعية distributivity. (ar)
- In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead. An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space. Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra. Replacing the field of scalars by a commutative ring leads to the more general notion of an . Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients. (en)
- Eine Algebra über einem Körper , Algebra über oder -Algebra (früher auch als lineare Algebra bezeichnet) ist ein Vektorraum über einem Körper , der um eine mit der Vektorraumstruktur verträgliche Multiplikation erweitert wurde. Je nach Kontext wird dabei mitunter zusätzlich gefordert, dass die Multiplikation das Assoziativgesetz oder das Kommutativgesetz erfüllt oder dass die Algebra bezüglich der Multiplikation ein Einselement besitzt. (de)
- Alĝebro (aŭ algebrao) estas algebra strukturo, kiu estas kaj ringo kaj vektora spaco.
* : modulo aŭ vektora spaco kaj ankaŭ kiel multipliko
* Asocieca alĝebro: alĝebro kies multipliko estas asocia
* : asocieca alĝebro, kies multipliko estas komuta
* Grupa alĝebro: asocieca alĝebro difinita per grupo
* Alĝebro de Lie: ne-asocieca alĝebro grava en geometrio (eo)
- En matemáticas, un álgebra sobre un cuerpo K, o una K-álgebra, es un espacio vectorial A sobre K equipado con una noción compatible de multiplicación de elementos de A. Una generalización directa admite que K sea cualquier anillo conmutativo.Algunos autores utilizan el término "álgebra" como sinónimo de "álgebra asociativa". (es)
- Dalam matematika, aljabar atas medan (disebut juga aljabar) adalah ruang vektor kelengkapan dengan hasil kali. Jadi, aljabar adalah struktur aljabar yang terdiri dari himpunan bersama dengan operasi perkalian dan penjumlahan dan perkalian skalar oleh elemen medan dan memenuhi aksioma yang diimplikasikan oleh "ruang vektor" dan "bilinear". Operasi perkalian dalam aljabar atau mungkin asosiatif, mengarah ke gagasan aljabar asosiatif dan aljabar takasosiatif. Diberikan sebuah bilangan bulat n, gelanggang dari matriks persegi tingkat n adalah contoh aljabar asosiatif pada medan bilangan riil bawah penambahan matriks dan perkalian matriks karena perkalian matriks bersifat asosiatif. Ruang Euklides tiga dimensi dengan perkalian yang diberikan oleh adalah contoh aljabar takasosiatif pada medan bilangan riil karena perkalian vektor takasosiatif, memenuhi identitas Jacobi sebagai gantinya. Sebuah aljabar dikatakan unital atau uniter jika memiliki elemen identitas sehubungan dengan perkalian. Gelanggang matriks kuadrat riil urutan n dalam bentuk aljabar unital karena matriks identitas tingkat n adalah elemen identitas yang berkaitan dengan perkalian matriks. Ini adalah contoh aljabar asosiatif unital, yang juga merupakan ruang vektor. Banyak penulis menggunakan istilah aljabar yang berarti aljabar asosiatif, atau aljabar asosiatif unital, atau dalam beberapa mata pelajaran seperti geometri aljabar, aljabar komutatif asosiatif unital. Mengganti medan skalar dengan gelanggang komutatif mengarah ke gagasan yang lebih umum tentang . Aljabar tidak disamakan dengan ruang vektor kelengkapan dengan , seperti , karena, untuk ruang seperti itu, hasil darab bukan dalam ruang, melainkan di medan koefisien. (in)
- En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : 1.
* (A, +, ·) est un espace vectoriel sur K ; 2.
* la loi × est définie de A × A dans A (loi de composition interne) ; 3.
* la loi × est bilinéaire. (fr)
- In matematica, per algebra su campo si intende uno spazio vettoriale definito su un campo e munito di un'operazione binaria "compatibile" con le altre leggi di composizione (o moltiplicazione) degli elementi dello spazio. Una generalizzazione diretta riguarda la possibilità di servirsi, invece che di un campo di base, di un qualsiasi anello commutativo. (it)
- 数学において体上の代数あるいは多元環(たげんかん、英: algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるスカラー倍とを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。 (ja)
- Algebra nad ciałem (algebra liniowa) – przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny). (pl)
- Een algebra is een uitbreiding van het begrip vectorruimte uit de lineaire algebra. In een algebra is, naast de optelling en de scalaire vermenigvuldiging, ook een binaire operatie, formeel als vermenigvuldiging aangeduid, tussen de elementen (vectoren) gedefineerd. (nl)
- En algebra över en kropp är inom matematik en algebraisk struktur, mer specifikt ett vektorrum med en operation som liknar multiplikation. (sv)
- Uma álgebra sobre um corpo é um espaço vetorial com uma operação binária de multiplicação de vetores, que tem a propriedade distributiva sobre a soma de vetores e associativa quando faz sentido. Explicitamente: Seja A um espaço vetorial sobre um corpo K. Se existe uma operação binária de A x A em A (chamada de multiplicação de vetores), A será uma álgebra sobre o corpo K quando: (distributividade) Quando a multiplicação de vetores é associativa: temos uma álgebra associativa. Nesse caso, o conjunto de vetores A com suas operações de soma e produto forma um anel. (pt)
- Алгебра над полем — это векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом. Алгебра называется ассоциативной, если операция умножения в ней ассоциативна; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность. (ru)
- Алгебра над полем — векторний простір, на якому введено білінійне множення узгоджене з структурою векторного простору. Алгебра над полем є одночасно векторним простором і кільцем, і ці структури узгоджені.Узагальненням цього поняття є алгебра над кільцем, яка, взагалі кажучи, є не векторним простором, а модулем над деяким кільцем. (uk)
- 域上的代数(algebra over a field)或域代数,一般可简称为代数,是在向量空间的基础上定义了一个双线性的乘法运算而构成的代数结构。 (zh)
|
rdfs:comment
|
- Algebra jako matematická struktura je vektorový prostor A nad tělesem F (anebo obecněji modul nad okruhem), na kterém je dána další operace násobení, které je lineární, t.j. pro . (cs)
- جبر على حقل في الرياضيات، هو فضاء متجهي مع ضرب اتجاهي اقتراني ثنائي خطي. وهذا يعني، أنه بنية جبرية مكونة من فضاء متجهي "V" جنبا إلى جنب مع عملية ثنائية مغلقة على الفضاء. حتى يتم اعتباره جبراً، يجب أن تكون هذه العملية V×V→V ملبية للبديهيات التوافقية الإضافية، مثل التوزيعية distributivity. (ar)
- Eine Algebra über einem Körper , Algebra über oder -Algebra (früher auch als lineare Algebra bezeichnet) ist ein Vektorraum über einem Körper , der um eine mit der Vektorraumstruktur verträgliche Multiplikation erweitert wurde. Je nach Kontext wird dabei mitunter zusätzlich gefordert, dass die Multiplikation das Assoziativgesetz oder das Kommutativgesetz erfüllt oder dass die Algebra bezüglich der Multiplikation ein Einselement besitzt. (de)
- Alĝebro (aŭ algebrao) estas algebra strukturo, kiu estas kaj ringo kaj vektora spaco.
* : modulo aŭ vektora spaco kaj ankaŭ kiel multipliko
* Asocieca alĝebro: alĝebro kies multipliko estas asocia
* : asocieca alĝebro, kies multipliko estas komuta
* Grupa alĝebro: asocieca alĝebro difinita per grupo
* Alĝebro de Lie: ne-asocieca alĝebro grava en geometrio (eo)
- En matemáticas, un álgebra sobre un cuerpo K, o una K-álgebra, es un espacio vectorial A sobre K equipado con una noción compatible de multiplicación de elementos de A. Una generalización directa admite que K sea cualquier anillo conmutativo.Algunos autores utilizan el término "álgebra" como sinónimo de "álgebra asociativa". (es)
- En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : 1.
* (A, +, ·) est un espace vectoriel sur K ; 2.
* la loi × est définie de A × A dans A (loi de composition interne) ; 3.
* la loi × est bilinéaire. (fr)
- In matematica, per algebra su campo si intende uno spazio vettoriale definito su un campo e munito di un'operazione binaria "compatibile" con le altre leggi di composizione (o moltiplicazione) degli elementi dello spazio. Una generalizzazione diretta riguarda la possibilità di servirsi, invece che di un campo di base, di un qualsiasi anello commutativo. (it)
- 数学において体上の代数あるいは多元環(たげんかん、英: algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるスカラー倍とを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。 (ja)
- Algebra nad ciałem (algebra liniowa) – przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny). (pl)
- Een algebra is een uitbreiding van het begrip vectorruimte uit de lineaire algebra. In een algebra is, naast de optelling en de scalaire vermenigvuldiging, ook een binaire operatie, formeel als vermenigvuldiging aangeduid, tussen de elementen (vectoren) gedefineerd. (nl)
- En algebra över en kropp är inom matematik en algebraisk struktur, mer specifikt ett vektorrum med en operation som liknar multiplikation. (sv)
- Uma álgebra sobre um corpo é um espaço vetorial com uma operação binária de multiplicação de vetores, que tem a propriedade distributiva sobre a soma de vetores e associativa quando faz sentido. Explicitamente: Seja A um espaço vetorial sobre um corpo K. Se existe uma operação binária de A x A em A (chamada de multiplicação de vetores), A será uma álgebra sobre o corpo K quando: (distributividade) Quando a multiplicação de vetores é associativa: temos uma álgebra associativa. Nesse caso, o conjunto de vetores A com suas operações de soma e produto forma um anel. (pt)
- Алгебра над полем — векторний простір, на якому введено білінійне множення узгоджене з структурою векторного простору. Алгебра над полем є одночасно векторним простором і кільцем, і ці структури узгоджені.Узагальненням цього поняття є алгебра над кільцем, яка, взагалі кажучи, є не векторним простором, а модулем над деяким кільцем. (uk)
- 域上的代数(algebra over a field)或域代数,一般可简称为代数,是在向量空间的基础上定义了一个双线性的乘法运算而构成的代数结构。 (zh)
- En matemàtiques, un àlgebra sobre un cos és un espai vectorial proveït amb un producte vectorial bilineal. És a dir, ésuna estructura algebraica que consta d'un espai vectorial juntament amb una operació, normalment anomenada multiplicació, que combina dos vectors qualssevol per formar un tercer vector; per qualificar-se com a àlgebra, aquesta multiplicació ha de satisfer certs axiomes de compatibilitat amb l'estructura espacial vectorial donada, com la propietat distributiva. En altres paraules, una àlgebra sobre un cos és un conjunt juntament amb operacions de multiplicació, suma, i multiplicació per un escalar del cos. (ca)
- In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra. (en)
- Dalam matematika, aljabar atas medan (disebut juga aljabar) adalah ruang vektor kelengkapan dengan hasil kali. Jadi, aljabar adalah struktur aljabar yang terdiri dari himpunan bersama dengan operasi perkalian dan penjumlahan dan perkalian skalar oleh elemen medan dan memenuhi aksioma yang diimplikasikan oleh "ruang vektor" dan "bilinear". Banyak penulis menggunakan istilah aljabar yang berarti aljabar asosiatif, atau aljabar asosiatif unital, atau dalam beberapa mata pelajaran seperti geometri aljabar, aljabar komutatif asosiatif unital. (in)
- Алгебра над полем — это векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом. (ru)
|