An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator. This means that depending on the generators and relations, a universal C*-algebra may not exist. In particular, free C*-algebras do not exist.

Property Value
dbo:abstract
  • In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator. This means that depending on the generators and relations, a universal C*-algebra may not exist. In particular, free C*-algebras do not exist. (en)
dbo:wikiPageID
  • 668934 (xsd:integer)
dbo:wikiPageLength
  • 6235 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1008251431 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator. This means that depending on the generators and relations, a universal C*-algebra may not exist. In particular, free C*-algebras do not exist. (en)
rdfs:label
  • Universal C*-algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License