This HTML5 document contains 132 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n14http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n13http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n21http://dbpedia.org/resource/An_infinitely_differentiable_function_that_is_not_analytic/

Statements

Subject Item
dbr:Non-analitic_smooth_function
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
dbo:wikiPageRedirects
dbr:Non-analytic_smooth_function
Subject Item
dbr:List_of_real_analysis_topics
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Analytic_function
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Mollifier
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Smoothness
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Earle_Raymond_Hedrick
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Taylor's_theorem
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Taylor_series
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Bump_function
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Klein–Kramers_equation
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Sigmoid_function
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Flat_function
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
Subject Item
dbr:Non-analytic_smooth_function
rdf:type
yago:MathematicalRelation113783581 yago:Function113783816 yago:WikicatSmoothFunctions yago:Relation100031921 yago:Abstraction100002137
rdfs:label
비 해석적 매끄러운 함수 Fonction régulière non analytique Non-analytic smooth function
rdfs:comment
En mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz. In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions. 수학에서, 매끄러운 함수(무한히 미분가능한 함수)와 해석함수 는 가장 중요한 함수의 유형이다. 어떠한 실수 인자를 가지는 해석함수는 매끄럽다는것은 쉽게 증명된다. 아래의 와 같이 그 역은 참이 아니다 콤팩트 지지 매끄러운 함수 의 중요한 적용 중 하나는 로랑 슈바르츠의 분포이론과 같은 이론에서 중요한 소위 말하는 완화자의 생성의 역할을 하는 것이다. 매끄럽지만 비 해석적인 함수의 존재는 미분기하학과 해석 기하학의 핵심적인 차이점을 나타낸다. 층 이론에서, 이 차이점은 다음과 같이 설명할 수 있다: 해석적인 경우와 비교해서 미분가능한 다양체에서 미분가능한 함수의 층은 단사층이다. 다음 함수는 보통 미분가능한 다양체에서 단위 분할을 만들 때 사용된다.
foaf:depiction
n13:Mollifier_Illustration.svg n13:Smooth_non-analytic_function.png n13:Smooth_transition_from_0_to_1.png n13:Non-analytic_smooth_function.png
dcterms:subject
dbc:Smooth_functions dbc:Articles_containing_proofs
dbo:wikiPageID
421463
dbo:wikiPageRevisionID
1124205340
dbo:wikiPageWikiLink
dbr:Pathological_(mathematics) dbr:Supremum_norm dbr:Monomial dbr:Sheaf_theory dbr:Complex_plane dbr:Weierstrass_M-test dbr:Cauchy-Hadamard_theorem dbr:Natural_number dbr:Generalized_function dbr:Partition_of_unity dbr:Taylor_series dbr:Polynomial dbr:Function_(mathematics) dbr:Derivative dbr:Unit_interval dbr:Complex_analysis dbr:Radius_of_convergence dbr:Bump_function dbr:Zero_function dbr:Continuous_function dbr:Flat_function dbr:Borel's_lemma dbr:Fourier_series dbr:Chain_rule dbr:Compact_support dbr:Origin_(mathematics) dbr:Dyadic_rational dbr:Real_number dbr:Recursion dbr:Converse_(logic) dbr:Differential_geometry dbr:Smooth_function dbr:Support_(mathematics) dbr:Ratio_test dbr:Uniform_convergence dbr:Distribution_(mathematics) dbr:Great_Picard_theorem dbr:Nonnegative dbr:Holomorphic_functions_are_analytic dbr:One-sided_limit n14:Smooth_non-analytic_function.png n14:Smooth_transition_from_0_to_1.png dbr:Mathematics dbr:Analytic_continuation dbc:Smooth_functions dbr:Analytic_function dbr:Euclidean_norm dbr:Euclidean_space dbr:Degree_of_a_polynomial dbr:Reciprocal_rule dbc:Articles_containing_proofs dbr:Counterexample dbr:Fabius_function dbr:Ball_(mathematics) dbr:Émile_Borel dbr:Fine_sheaf n14:Non-analytic_smooth_function.png dbr:Boundedness_theorem dbr:Essential_singularity dbr:Differentiable_function dbr:Differentiable_manifold dbr:Mathematical_induction dbr:Complex_manifold dbr:Dense_set dbr:Exponential_function dbr:Real_line dbr:Laurent_Schwartz dbr:Integer dbr:Mollifier n14:Mollifier_Illustration.svg
owl:sameAs
freebase:m.026hvc yago-res:Non-analytic_smooth_function dbpedia-ko:비_해석적_매끄러운_함수 n18:4suSX dbpedia-fr:Fonction_régulière_non_analytique wikidata:Q7048840
dbp:wikiPageUsesTemplate
dbt:Math dbt:Planetmath_reference dbt:Clear dbt:Collapse_bottom dbt:Collapse_top dbt:Short_description dbt:Reflist dbt:Main
dbo:thumbnail
n13:Non-analytic_smooth_function.png?width=300
dbp:title
Infinitely-differentiable function that is not analytic
dbp:urlname
InfinitelydifferentiableFunctionThatIsNotAnalytic
dbo:abstract
En mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz. L'existence de fonctions régulières mais non analytiques représente la différence entre la géométrie différentielle et la géométrie analytique. En termes topologiques, on peut définir cette différence ainsi : le préfaisceau des fonctions différentiables sur une variété différentiable est fin, contrairement au cas analytique. Les fonctions présentées dans cet article sont généralement utilisées pour construire des partitions de l’unité sur des variétés différentiables. 수학에서, 매끄러운 함수(무한히 미분가능한 함수)와 해석함수 는 가장 중요한 함수의 유형이다. 어떠한 실수 인자를 가지는 해석함수는 매끄럽다는것은 쉽게 증명된다. 아래의 와 같이 그 역은 참이 아니다 콤팩트 지지 매끄러운 함수 의 중요한 적용 중 하나는 로랑 슈바르츠의 분포이론과 같은 이론에서 중요한 소위 말하는 완화자의 생성의 역할을 하는 것이다. 매끄럽지만 비 해석적인 함수의 존재는 미분기하학과 해석 기하학의 핵심적인 차이점을 나타낸다. 층 이론에서, 이 차이점은 다음과 같이 설명할 수 있다: 해석적인 경우와 비교해서 미분가능한 다양체에서 미분가능한 함수의 층은 단사층이다. 다음 함수는 보통 미분가능한 다양체에서 단위 분할을 만들 때 사용된다. In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions. The existence of smooth but non-analytic functions represents one of the main differences between differential geometry and analytic geometry. In terms of sheaf theory, this difference can be stated as follows: the sheaf of differentiable functions on a differentiable manifold is fine, in contrast with the analytic case. The functions below are generally used to build up partitions of unity on differentiable manifolds.
prov:wasDerivedFrom
wikipedia-en:Non-analytic_smooth_function?oldid=1124205340&ns=0
dbo:wikiPageLength
14045
foaf:isPrimaryTopicOf
wikipedia-en:Non-analytic_smooth_function
Subject Item
dbr:An_infinitely_differentiable_function_that_is_not_analytic
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
dbo:wikiPageRedirects
dbr:Non-analytic_smooth_function
Subject Item
n21:proof
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
dbo:wikiPageRedirects
dbr:Non-analytic_smooth_function
Subject Item
dbr:Infinitely-differentiable_function_that_is_not_analytic
dbo:wikiPageWikiLink
dbr:Non-analytic_smooth_function
dbo:wikiPageRedirects
dbr:Non-analytic_smooth_function
Subject Item
wikipedia-en:Non-analytic_smooth_function
foaf:primaryTopic
dbr:Non-analytic_smooth_function