dbo:abstract
|
- في الرياضيات، دالة معممة (بالإنجليزية: Generalized function) هي كائن رياضي يعمم مفهوم الدالة. هناك أكثر من نظرية معترف بها تتحدث حول هذه المسألة. (ar)
- In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and more contemporary developments in certain directions are closely related to ideas of Mikio Sato, on what he calls algebraic analysis. Important influences on the subject have been the technical requirements of theories of partial differential equations, and group representation theory. (en)
- 数学において超関数(ちょうかんすう、英: generalized function)は、関数の概念を一般化するもので、いくつかの理論が知られている。超関数の重要な利点として、不連続関数の扱いを滑らかな関数に似せることができることが挙げられる。また点電荷のような離散的な物理現象の記述にも便利である。超関数の応用範囲は極めて広く、特に物理学や工学においても利用されている。 超関数の応用例としては主に、不連続関数の微分、デルタ関数、アダマール有限部分積分、のフーリエ変換などが挙げられる。 超関数の起源は演算子法に見ることができるが、直接的には、セルゲイ・ソボレフやローラン・シュヴァルツらの仕事がその始まりである。1935年にソボレフが、部分積分を形式的に用いて、微分方程式の解の拡張をしたのをはじめ、何人かの数学者によって微分の拡張が行われ始め、1940年代末にはシュワルツがこれらを超関数の理論としてまとめた。1958年に佐藤幹夫が層コホモロジーの理論を応用して、シュワルツらとは別の見地に立った超関数論を組み立てた。超関数論に重要な影響を与えたのは、偏微分方程式や群の表現の理論などからの技術的な要請であった。 (ja)
- 数学上,广义函数(generalized function)或是“分布”,是将函数的概念一般化得到的对象。得到承认的理论不止一种。广义函数在使得不连续函数表现得更像光滑函数的方面很有用,并且(在极限情况下)可以表述像点电荷这类的物理现象。它们广泛应用于物理和工程领域。 有些方法的一个共同之处在于它们是基于日常数值函数的算子方面的。其早期历史和的一些思想有联系,而更为近代的发展和佐藤幹夫称为代数分析的特定方向的一些思想有密切关联。偏微分方程和群表示理论的技术要求曾对该主题有重要影响。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 17314 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- في الرياضيات، دالة معممة (بالإنجليزية: Generalized function) هي كائن رياضي يعمم مفهوم الدالة. هناك أكثر من نظرية معترف بها تتحدث حول هذه المسألة. (ar)
- 数学において超関数(ちょうかんすう、英: generalized function)は、関数の概念を一般化するもので、いくつかの理論が知られている。超関数の重要な利点として、不連続関数の扱いを滑らかな関数に似せることができることが挙げられる。また点電荷のような離散的な物理現象の記述にも便利である。超関数の応用範囲は極めて広く、特に物理学や工学においても利用されている。 超関数の応用例としては主に、不連続関数の微分、デルタ関数、アダマール有限部分積分、のフーリエ変換などが挙げられる。 超関数の起源は演算子法に見ることができるが、直接的には、セルゲイ・ソボレフやローラン・シュヴァルツらの仕事がその始まりである。1935年にソボレフが、部分積分を形式的に用いて、微分方程式の解の拡張をしたのをはじめ、何人かの数学者によって微分の拡張が行われ始め、1940年代末にはシュワルツがこれらを超関数の理論としてまとめた。1958年に佐藤幹夫が層コホモロジーの理論を応用して、シュワルツらとは別の見地に立った超関数論を組み立てた。超関数論に重要な影響を与えたのは、偏微分方程式や群の表現の理論などからの技術的な要請であった。 (ja)
- 数学上,广义函数(generalized function)或是“分布”,是将函数的概念一般化得到的对象。得到承认的理论不止一种。广义函数在使得不连续函数表现得更像光滑函数的方面很有用,并且(在极限情况下)可以表述像点电荷这类的物理现象。它们广泛应用于物理和工程领域。 有些方法的一个共同之处在于它们是基于日常数值函数的算子方面的。其早期历史和的一些思想有联系,而更为近代的发展和佐藤幹夫称为代数分析的特定方向的一些思想有密切关联。偏微分方程和群表示理论的技术要求曾对该主题有重要影响。 (zh)
- In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. (en)
|
rdfs:label
|
- دالة معممة (ar)
- Generalized function (en)
- 超関数 (ja)
- Função generalizada (pt)
- 广义函数 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:differentFrom
of | |
is foaf:primaryTopic
of | |