dbo:abstract
|
- Die prime Restklassengruppe ist die Gruppe der primen Restklassen bezüglich eines Moduls . Sie wird als oder notiert. Die primen Restklassen sind genau die multiplikativ invertierbaren Elemente im Restklassenring. Die primen Restklassengruppen sind daher endliche abelsche Gruppen bezüglich der Multiplikation. Sie spielen in der Kryptographie eine bedeutende Rolle. Die Gruppe besteht aus den Restklassen , deren Elemente zu teilerfremd sind. Gleichwertig dazu muss für den Repräsentanten der Restklasse gelten, wobei ggT den größten gemeinsamen Teiler bezeichnet. Darauf weist die Bezeichnung „prime Restklasse“ hin, für teilerfremd sagt man auch relativ prim. Die Gruppenordnung von ist durch den Wert der eulerschen φ-Funktion gegeben. (de)
- Se define un grupo multiplicativo de enteros módulo n como un conjunto finito de enteros positivos menores que n siendo números coprimos respecto a n también. En notación matemática se definiría: (es)
- In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.Hence another name is the group of primitive residue classes modulo n.In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n. This quotient group, usually denoted , is fundamental in number theory. It is used in cryptography, integer factorization, and primality testing. It is an abelian, finite group whose order is given by Euler's totient function: For prime n the group is cyclic and in general the structure is easy to describe, though even for prime n no general formula for finding generators is known. (en)
- Мультипликативная группа кольца вычетов по модулю m — мультипликативная группа обратимых элементов кольца вычетов по модулю m. При этом в качестве множества элементов может рассматриваться любая приведенная система вычетов по модулю m. (ru)
- 在同余理论中,模 n 的互质同余类组成一个乘法群,称为整数模 n 乘法群,也称为模 n 既约剩余类。在环理论中,一个抽象代数的分支,也称这个群为整数模 n 的环的单位群(单位是指乘法可逆元)。 这个群是数论的基石,在密码学、整数分解和素性测试均有运用。例如,关于这个群的阶(即群的“大小”),我们可以确定如果 n 是质数当且仅当阶数为 n-1。 (zh)
- В модульній арифметиці, множина класів рівності чисел, що є взаємно простими до модуля n утворюють групу над операцією множення відому як мультиплікативна група кільця лишків за модулем n (англ. Multiplicative group of integers modulo n, primitive residue classes modulo n). В теорії кілець, відгалуженні абстрактної алгебри, її описують як групу оборотних елементів кільця лишків за модулем n. (Оборотний елемент, тобто такий, що має обернений за модулем.) Ця група фундаментальна в теорії чисел. Вона знайшла застосування в криптографії, факторизації цілих чисел і перевірці на простоту. Наприклад, через знаходження порядку (тобто розміру) групи, можна визначити чи просте n: n просте тоді і тільки тоді, якщо порядок становить n − 1. (uk)
|
rdfs:comment
|
- Se define un grupo multiplicativo de enteros módulo n como un conjunto finito de enteros positivos menores que n siendo números coprimos respecto a n también. En notación matemática se definiría: (es)
- Мультипликативная группа кольца вычетов по модулю m — мультипликативная группа обратимых элементов кольца вычетов по модулю m. При этом в качестве множества элементов может рассматриваться любая приведенная система вычетов по модулю m. (ru)
- 在同余理论中,模 n 的互质同余类组成一个乘法群,称为整数模 n 乘法群,也称为模 n 既约剩余类。在环理论中,一个抽象代数的分支,也称这个群为整数模 n 的环的单位群(单位是指乘法可逆元)。 这个群是数论的基石,在密码学、整数分解和素性测试均有运用。例如,关于这个群的阶(即群的“大小”),我们可以确定如果 n 是质数当且仅当阶数为 n-1。 (zh)
- Die prime Restklassengruppe ist die Gruppe der primen Restklassen bezüglich eines Moduls . Sie wird als oder notiert. Die primen Restklassen sind genau die multiplikativ invertierbaren Elemente im Restklassenring. Die primen Restklassengruppen sind daher endliche abelsche Gruppen bezüglich der Multiplikation. Sie spielen in der Kryptographie eine bedeutende Rolle. (de)
- In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.Hence another name is the group of primitive residue classes modulo n.In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n. (en)
- В модульній арифметиці, множина класів рівності чисел, що є взаємно простими до модуля n утворюють групу над операцією множення відому як мультиплікативна група кільця лишків за модулем n (англ. Multiplicative group of integers modulo n, primitive residue classes modulo n). В теорії кілець, відгалуженні абстрактної алгебри, її описують як групу оборотних елементів кільця лишків за модулем n. (Оборотний елемент, тобто такий, що має обернений за модулем.) (uk)
|