An Entity of Type: anatomical structure, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960's discovery by Marshall Davidson Hatch and Charles Roger Slack that some plants, when supplied with 14CO2, incorporate the 14C label into four-carbon molecules first.

Property Value
dbo:abstract
  • La via de 4 carbonis, o també denominada Via de Hatch-Slack en honor dels seus descobridors, és una sèrie de reaccions bioquímiques de fixació del carboni provinent del CO₂ atmosfèric. El procés consisteix en la captació del Diòxid de carboni en les cèl·lules del mesofil·le de la planta, però en comptes de dur-lo immediatament al cicle de Calvin, les molècules reaccionen amb el PEP( Fosfoenolpiruvat ), sent estimulats per un enzim homònim (PEP Carboxilasa). El producte final entre el PEP i el CO₂ és l'àcid oxalacètic, el qual posteriorment és convertit en àcid màlic, o també anomenat malat. El malat és dut a les cèl·lules de la beina, on és descarboxilat, produint el CO₂ necessari per al cicle de Calvin, a més d'àcid pirúvic. Aquest últim és enviat novament al mesòfil on és transformat per mitjà de ATP en fosfoenolpiruvat (PEP), per a quedar novament disponible per al cicle. L'avantatge d'aquest procés radica en el fet que al tenir a la RuBisCO tancada en les cèl·lules de la beina se li impedeix la possibilitat que reaccioni amb oxigen en situacions en les quals la concentració de CO₂ sigui molt baixa, per la qual cosa el CO₂ perdut a través de la fotorespiració es redueix considerablement. Fins i tot les molècules de diòxid de carboni expulsades per la fotorespiració són novament reutilitzades a través del PEP, el qual les captura en el mesòfil per a ser ingressades al cicle de Calvin. Les plantes que usen aquesta via per a la fixació del carboni són denominades C4, entre les quals es distingeixen el blat de moro, la canya de sucre i la invasora Cynodon dactylon (Bermuda grass) entre d'altres. (ca)
  • التمثيل الضوئي رباعي الكربون (بالإنجليزية: C4 Carbon fixation)‏ هو إحدى طرائق تثبيت ثنائي أكسيد الكربون خلال عملية التمثيل الضوئي في النبات. توجد هذه الطريقة بشكل رئيسي لدى بعض النباتات العشبية التي تعيش في عموما في مناطق حارة وتسمى نباتات ك4 (بالإنجليزية: C4 plants)‏. تغطي نباتات الـ ك4 حوالي 20 مليون كم مربع من مساحة الأرض وتعتبر مسكناً لخمس المجتمع الإنساني، وتستغل أعشاب ك4 بكثافة في الزراعة الاستوائية. يوجد هذا النمط من التمثيل الضوئي لدى ما يفوق 8000 نوع نباتي من مغطاة البذور موزعة على (18) فصيلة مختلفة، ولكنها لا تمثل سوى أقل من (1%) من أنواع النباتات الأرضية. تنتمي كثير من نباتات ك4 إلى طائفة أحاديات الفلقة وخاصة الفصيلة النجيلية مثل الذرة والذرة البيضاء وقصب السكر والثمام العصوي والحشيشة الفضية ومن ثنائيات الفلقة تتبع معظم نباتات أسرة السرمقاوات نمط ك4. (ar)
  • Hatchův–Slackův cyklus je jeden z cyklů fixace oxidu uhličitého probíhající v temnostní fázi fotosyntézy (sekundární děje). Bývá nazýván také C4-cyklus, protože prvním stabilním meziproduktem je čtyřuhlíkatý oxalacetát. C4-rostliny koncentrují CO2 fixací do malátu, ze kterého je potom uvolňován do Calvinova cyklu. Tímto způsobem výrazně snižují ztráty způsobené fotorespirací, ale zároveň spotřebují více energie (2 ATP navíc), a proto jsou většinou teplomilné nebo tropické. (cs)
  • Τo μονοπάτι C4 είναι ένα μεταβολικό μονοπάτι που υπάρχει στα φυτά (τα λεγόμενα «C4 φυτά») τα οποία φέρουν μια διαφοροποίηση στην δέσμευση και στην αναγωγή του άνθρακα από εκείνες που προβλέπει ο κύκλος του Κάλβιν που ισχύει για τα περισσότερα φυτά.. Από την δεκαετία του 1960 φάνηκε ότι σε αυτά τα φυτά (όπως το καλαμπόκι), τα πρώτα προϊόντα της φωτοσύνθεσης είναι οργανικά οξέα με 4 άτομα άνθρακα. (el)
  • C4-Pflanzen nutzen einen Stoffwechselweg, um Kohlenstoffdioxid für die Photosynthese zunächst vorzufixieren und erst dann wie C3-Pflanzen im Calvin-Zyklus zu Kohlenhydraten aufzubauen (C4-Photosynthese). Der Name C4 leitet sich vom ersten Fixierungsprodukt ab, welches durch die Assimilation von Kohlenstoffdioxid entsteht. Während dies bei C3-Pflanzen eine Kohlenstoffverbindung mit drei C-Atomen ist (D-3-Phosphoglycerat), findet man in C4-Pflanzen als erstes Oxalacetat, eine Verbindung mit vier C-Atomen. Die Kohlenstoffdioxid-Assimilation und der Calvin-Zyklus erfolgen in C4-Pflanzen räumlich voneinander getrennt. Durch Aufbringung von Energie wird dadurch Kohlenstoffdioxid aktiv angereichert, was zu einer höheren Photosyntheserate – besonders unter Wassermangel und der daraus resultierenden Verengung der Spaltöffnungen – führt. Daher sind C4-Pflanzen den C3-Pflanzen ökophysiologisch unter ariden Bedingungen überlegen. Durch die aktive Anreicherung findet die Photorespiration deutlich seltener statt. Typische C4-Pflanzen sind insbesondere Gräser, darunter auch bekannte Nutzpflanzen wie Mais, Zuckerrohr und Hirse, aber auch andere Arten, wie Amarant. Pflanzen mit einem Crassulaceen-Säurestoffwechsel (CAM-Pflanzen) verfahren ähnlich wie C4-Pflanzen, bei ihnen sind Vorfixierung und der Calvin-Zyklus indes zeitlich voneinander getrennt. (de)
  • C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960's discovery by Marshall Davidson Hatch and Charles Roger Slack that some plants, when supplied with 14CO2, incorporate the 14C label into four-carbon molecules first. C4 fixation is an addition to the ancestral and more common C3 carbon fixation. The main carboxylating enzyme in C3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO2 (carboxylation) or oxygen (oxygenation) as a substrate. The latter process, oxygenation, gives rise to the wasteful process of photorespiration. C4 photosynthesis reduces photorespiration by concentrating CO2 around RuBisCO. To ensure that RuBisCO works in an environment where there is a lot of carbon dioxide and very little oxygen, C4 leaves generally differentiate two partially isolated compartments called mesophyll cells and bundle-sheath cells. CO2 is initially fixed in the mesophyll cells by the enzyme PEP carboxylase which reacts the three carbon phosphoenolpyruvate (PEP) with CO2 to form the four carbon oxaloacetic acid (OAA). OAA can be chemically reduced to malate or transaminated to aspartate. These intermediates diffuse to the bundle sheath cells, where they are decarboxylated, creating a CO2-rich environment around RuBisCO and thereby suppressing photorespiration. The resulting pyruvate (PYR), together with about half of the phosphoglycerate (PGA) produced by RuBisCO, diffuses back to the mesophyll. PGA is then chemically reduced and diffuses back to the bundle sheath to complete the reductive pentose phosphate cycle (RPP). This exchange of metabolites is essential for C4 photosynthesis to work. On one hand, these additional steps require more energy in the form of ATP to regenerate PEP. On the other hand, concentrating CO2 allows high rates of photosynthesis at higher temperatures. Higher concentration overcomes the reduction of gas solubility with temperature (Henry's law). The CO2 concentrating mechanism also maintains high gradients of CO2 concentration across the stomatal pores. This means that C4 plants have generally lower stomatal conductance, reduced water losses and have generally higher water-use efficiency. C4 plants are also more efficient in using nitrogen, since PEP carboxylase is much cheaper to make than RuBisCO. However, since the C3 pathway does not require extra energy for the regeneration of PEP, it is more efficient in conditions where photorespiration is limited, typically at low temperatures and in the shade. (en)
  • Ĉi tiu artikolo estas pri plantoj. Pri la aliaj signifoj de la dusigna kombino vidu apartigilon C kun nombro C4-plantoj estas tiuj plantoj, ĉe kiuj – kompare al la C3-plantoj – evoluis alia vojo de la . La unua rimarkebla fotosinteza produkto estas C4-molekulo, la , tiel estis elektita la nomumo por diferencigi al plantoj kun "normala" fotosinteza materialŝanĝo. Al la C4-plantoj apartenas unukotiledonaj plantoj kiaj milio, maizo, papiruscipero, sukerkano kaj ĉina kano. (eo)
  • La vía de 4 carbonos, vía C4 o ruta C4, también denominada vía de Hatch-Slack en honor a sus descubridores, es una serie de reacciones bioquímicas de fijación del CO2 atmosférico en plantas. La asimilación del CO2 se realiza mediante las reacciones del ciclo de Calvin; pero en las plantas C4, previa a la carboxilación de la ribulosa-1,5-bisfosfato catalizada por la enzima RuBisCO, que produce ácido fosfoglicérico de tres átomos de carbono, se produce una primera carboxilación del ácido fosfoenolpirúvico (PEP) que origina como producto estable primario un ácido dicarboxílico de cuatro átomos de carbono (málico o aspártico). Este tipo de plantas consigue concentrar el CO2 en torno a la enzima RuBisCO, llegando casi a su nivel de saturación y haciéndola así más eficaz en la segunda carboxilación al evitar al máximo la pérdida de CO2 en la fotorrespiración. Esta mejora en la asimilación del CO2 atmosférico es posible gracias a que las carboxilaciones sucesivas se separan espacialmente para el CO2. Debido al método más eficaz de fijación de CO2 en plantas C4, no es necesario mantener los estomas abiertos todo el tiempo para garantizar el intercambio de gases activo, lo que significa que se minimizan las pérdidas de agua durante la transpiración vegetal. Por esta razón, las plantas C4 pueden crecer en hábitats más secos, a altas temperaturas, en condiciones de salinidad y falta de CO2. Sin embargo, los pasos adicionales requeridos para la fijación de carbono en la vía C4 requieren un aporte de energía adicional en forma de ATP. En el ciclo de Calvin, las plantas C4, así como las plantas C3, usan 3 moléculas de ATP para fijar una molécula de CO2 y 2 moléculas de NADPH. Para la regeneración del aceptor de carbono en la vía de 4 carbonos, es decir, la conversión de piruvato en PEP, se requieren 2 moléculas de ATP adicionales. Como resultado, una molécula de CO2 en la vía C4 consume 5 moléculas de ATP y 2 moléculas de NADPH. Por esta razón, las plantas C4 requieren un mayor nivel de exposición a la luz solar para un crecimiento óptimo. (es)
  • La fixation du carbone en C4 est l'un des trois modes de fixation du carbone des êtres vivants, parallèlement à la fixation du carbone en C3 et au métabolisme acide crassulacéen (CAM). On l'appelle ainsi en référence à l'oxaloacétate, molécule comportant quatre atomes de carbone formée dès la première étape du processus chez un petit groupe de plantes souvent désignées collectivement comme « plantes en C4 ». On pense que le processus en C4 est une évolution de la fixation du carbone en C3. Les processus de type C4 et CAM permettent en effet de limiter la photorespiration, qui résulte de la fixation d'une molécule d'oxygène O2 par l'activité oxygénase de la Rubisco parallèlement à l'activité carboxylase de cette enzyme qui, seule, permet la fixation du dioxyde de carbone CO2. (fr)
  • C4型光合成(C4がたこうごうせい)とは、光合成の過程で一般のCO2還元回路であるカルビン・ベンソン回路の他にCO2濃縮のためのC4経路を持つ光合成の一形態である。C4経路の名はCO2固定において、初期産物であるオキサロ酢酸がC4化合物であることに由来する。C4型光合成を行なう植物をC4植物と言い、にも発達した葉緑体が存在するのが特徴である。これに対してカルビン・ベンソン回路しか持たない植物をC3植物という。 1950年代および1960年代初頭に、およびユーリ・カルピロフによって、一部の植物が立証されているを使わずに最初の段階でリンゴ酸およびアスパラギン酸を生産していることが示された。C4経路は最終的にオーストラリアのとC・R・スラックによって1966年に詳細に解明された。このため、C4経路はハッチ=スラック回路と呼ばれることもある。 (ja)
  • C4 식물은 4탄당(C4) 화합물이 관여하는 추가적인 경로(C4회로)를 이용해 가 부족한 환경에서도 광합성의 암반응(광비의존성반응)을 계속할 수 있는 식물을 말한다. 4탄당인 옥살아세트산이 최초의 탄소고정산물이기 때문에 "C4"경로 라는 이름이 붙여졌으며 1966년에 2명의 호주 과학자들 (Hatch& Slack)이 밝혀내었기 때문에 Hatch-Slack 경로라고도 불린다. 캘빈회로(C3회로)의 Rubisco보다 를 효율적으로 고정하는 C4 식물의 탄소고정회로는 의 최초 고정 산물이 4탄당(C4)인 데서 이름이 유래되었다. 대부분의 열대 혹은 아열대성 식물이 이 무리에 속한다. 는 공기 중에 아주 적은 비율(0.03%)로 존재하며 추가적으로 온도가 높고 일조량이 많은 환경의 조건에서 사용이 불안정한 상태가 되면 캘빈회로에 있는 고정효소인 Rubisco는 더 이상 탄소 고정보다는 광호흡(photorespiration)을 하는 비율이 높아지게 된다. 반면에 C4식물은 Rubisco보다 강력한 고정효소인 (Phosphoenolpyruvate carboxylase)를 이용해 탄소 고정을 계속할 수 있다. (ko)
  • Si definiscono piante C4 alcune specie di piante dei climi caldi ma con ridotta disponibilità idrica, come ad esempio il mais, il sorgo e la canna da zucchero, che usufruiscono di una via differente per la fissazione della CO2 (uno dei passaggi necessari per portare a termine il processo fotosintetico). Queste piante hanno sviluppato una via alternativa al ciclo di Calvin-Benson, organizzata sulla presenza di due tipi di cellule funzionalmente e morfologicamente diverse, le cellule del mesofillo e quelle della guaina del fascio.La fotosintesi C4 è perciò, insieme alla fotosintesi CAM, un adattamento adottato da alcune specie di piante, viventi in climi aridi, per risparmiare acqua nella fase di fissazione del carbonio. Questa via biosintetica fu scoperta nel 1966 da due ricercatori australiani, M. D. Hatch e C. R. Slack, e viene infatti anche indicata come via biosintetica di Hatch-Slack. (it)
  • Fotosynteza C4, cykl Hatcha-Slacka, cykl Kortschacka-Hatcha-Slacka – rodzaj fotosyntezy, w której dodatkowy mechanizm wiązania dwutlenku węgla poprzedza cykl Calvina-Bensona. Rośliny posiadające zdolność wiązania dwutlenku węgla (CO2) do fosfoenolopirogronianu określane są nazwą rośliny typu C4. Pierwszym trwałym produktem wiązania jest związek o czterech atomach węgla – szczawiooctan. Rośliny te wykształciły mechanizmy anatomiczne i fizjologiczne pozwalające na zwiększenie stężenia CO2 w komórkach, w których zachodzi cykl Calvina-Bensona. W efekcie nie obserwuje się zachodzenia u tych roślin fotooddychania, związanego z reakcją oksygenacji RuBP katalizowaną przez RuBisCo. Reakcje fotooddychania są przyczyną strat energii u roślin C3. Rośliny C4, pomimo konieczności zużycia dodatkowej energii w postaci ATP, cechują się większą wydajnością fotosyntezy i szybszą produkcją biomasy. Większość roślin typu C4 występuje w klimacie gorącym, gdzie energia słoneczna nie jest czynnikiem limitującym, a mechanizm koncentracji CO2 umożliwia sprawną asymilację przy przymkniętych aparatach szparkowych i szybki wzrost przy niewielkim zapotrzebowaniu na wodę. Przystosowania anatomiczne polegają na zróżnicowaniu komórek zaangażowanych w wiązanie CO2 na komórki mezofilu oraz komórki pochew okołowiązkowych. Komórki pochew okołowiązkowych posiadają grubą ścianę komórkową, zwykle adkrustowaną suberyną, dzięki czemu ściana komórkowa jest w bardzo małym stopniu przepuszczalna dla gazów. Proces wiązania CO2 zachodzi dwukrotnie. Po wniknięciu do komórek mezofilu przez aparaty szparkowe, CO2 przyłączany jest do fosfoenolopirogronianu. W reakcji tej powstaje związek czterowęglowy – szczawiooctan. Jest on w zależności od gatunku rośliny przekształcany do asparaginianu lub jabłczanu i w tej postaci przenoszony do komórek pochew okołowiązkowych. Tam zachodzi reakcja dekarboksylacji i wydzielenie CO2, który jest włączany do cyklu Calvina-Bensona. Cykl ten zachodzi tylko w komórkach pochew okołowiązkowych, gdzie stężenie CO2 przekracza 10-20 razy stężenie CO2 w komórkach mezofilu. Brak cyklu Calvina-Bensona w komórkach mezofilowych związany jest z brakiem enzymu, przyłączającego CO2 do cząsteczki rybulozo-1,5-bisfosforanu (RuBP) określanego nazwą karboksylaza oksygenaza rybulozo-1,5-bisfosforanu (RuBisCO). Enzym ten może katalizować także reakcję przyłączenia do RuBP tlenu, gdyż tlen i dwutlenek węgla konkurują o centrum aktywne RuBisCO. Proces ten nosi nazwę fotooddychania i obniża wydajność fotosyntezy roślin C3. Dzięki zwiększonemu stężeniu CO2 w komórkach pochew okołowiązkowych proces fotooddychania jest zahamowany, a tym samym wydajność fotosyntezy roślin C4 jest wyższa niż roślin C3. Jednak nakład energetyczny na związanie jednej cząsteczki CO2 jest większy niż u roślin C3. (pl)
  • Een C4-plant is een type plant die niet alleen gebruikmaakt van de basisvorm van de fotosynthese zoals de C3-plant, maar eerst een tussenstap uitvoert waarbij een verbinding met vier koolstofatomen wordt gemaakt – vandaar de naamgeving. (nl)
  • C4-фотосинтез, или цикл Хэтча — Слэка, — путь связывания углерода, характерный для высших растений, первым продуктом которого является четырёхуглеродная щавелевоуксусная кислота, а не трёхуглеродная 3-фосфоглицериновая кислота, как у большинства растений с обычным C3-фотосинтезом. По своей сути C4-фотосинтез представляет собой модификацию обычного C3-фотосинтеза и появился в процессе эволюции значительно позже последнего. В цикле Хэтча — Слэка растения осуществляют первичную фиксацию углерода в клетках мезофилла через карбоксилирование фосфоенолпирувата (ФЕП) при участии фермента фосфоенолпируваткарбоксилазы (ФЕП-карбоксилаза). Образовавшийся в результате реакции оксалоацетат превращается в малат или аспартат и в таком виде транспортируется в клетки обкладки проводящего пучка, где в результате декарбоксилирования высвобождается CO2, поступающий в восстановительный пентозофосфатный цикл. В цикле Кальвина у C4-растений, как и у C3-растений, CO2 превращается в трёхатомный сахар, который идёт на синтез сахарозы. Транспорт CO2 из клеток мезофилла в клетки обкладки в виде промежуточных продуктов фиксации позволяет значительно повысить его концентрацию в месте локализации Рубиско и таким образом значительно увеличить её эффективность, избежав побочной реакции с кислородом и, как следствие, полностью избавиться от фотодыхания. Благодаря более эффективному способу фиксации CO2 отпадает необходимость всё время держать устьица открытыми для обеспечения активного газообмена, а значит снижаются потери воды в ходе транспирации. По этой причине C4-растения способны расти в более засушливых местообитаниях, при высоких температурах, в условиях засоления и недостатка CO2. Тем не менее, дополнительные шаги по фиксации углерода в C4-пути требуют дополнительных затрат энергии в форме АТФ. Если принять, что в цикле Кальвина у C4-растений, так же как и у C3-растений, для фиксации одной молекулы CO2 используются 3 молекулы АТФ и 2 молекулы НАДФН, то для регенерации акцептора углерода в цикле Хэтча — Слэка, то есть превращения пирувата в ФЕП, требуются дополнительно 2 молекулы АТФ. В итоге на одну молекулу CO2 в C4-пути расходуется 5 молекул АТФ и 2 молекулы НАДФН. По этой причине C4-растениям для оптимального роста требуется более высокий уровень инсоляции. (ru)
  • C4-växter betecknar växter där basmolekylen i fotosyntesreaktionen innehåller 4 stycken kol-atomer. C4-växter har en ekologisk fördel framför C3-växter i varmt och torrt klimat på grund av låg fotorespiration. Exempel på C4-växter är majs. Ytterligare en typ av fotosyntes är CAM-fotosyntes. (sv)
  • A fotossíntese C4 é um dos três mecanismos bioquímicos, juntamente com a fotossíntese C3 e fotossíntese das crassuláceas (MAC), utilizado para fazer a fixação do carbono. É assim designado por causa da molécula com 4 átomos de carbono presente no primeiro produto da fixação do carbono nestas plantas, em contraste com a molécula com 3 átomos de carbono das plantas C3. A fixação C4 é um aprimoramento da mais comum fixação C3 e pensa-se que terá evoluído mais recentemente. A fotossíntese C4 e o MAC vencem a tendência da enzima RuBisCO para fixar o oxigénio em lugar do dióxido de carbono no que se designa por . Tal é conseguido usando uma enzima mais eficiente para fixar o CO2 nas células do mesofilo e transportando este carbono fixado via malato ou aspartato até às células da bainha do feixe. Nestas células, a RuBisCO é isolada do oxigénio atmosférico e saturada com CO2 libertado pela descarboxilação do malato ou oxaloacetato. Contudo, estes passos adicionais requerem mais energia na forma de ATP. Por causa desta necessidade adicional de energia, as plantas C4 são capazes de fixar o carbono de modo mais eficiente apenas em determinadas condições, sendo a via C3 mais eficiente noutras condições. (pt)
  • C4类二氧化碳固定(英語:C4 carbon fixation)是植物的三种碳固定方式之一,因为第一个可观察得到的产物是一个四碳化合物草酰乙酸,人们就命名其为C4类碳固定。 C4类植物比C3类植物在二氧化碳固定方面更进一步。单子叶植物玉米、中国芒、甘蔗和小米都属于C4类。 (zh)
  • C4-фотосинтез, або цикл Хетча — Слека — шлях зв'язування вуглецю, характерний для вищих рослин, першим продуктом якого є чотиривуглецева , а не тривуглецева 3-фосфогліцеринова кислота, як у більшості рослин зі звичайним C3-фотосинтезом. По суті C4-фотосинтез є модифікацією звичайного C3-фотосинтезу і з'явився в процесі еволюції набагато пізніше від нього.В циклі Хетча — Слека рослини здійснюють первинну фіксацію вуглецю в клітинах мезофіла через карбоксилювання фосфоенолпірувату (ФЕП) за участі ферменту фосфоенолпіруваткарбоксилази (ФЕП-карбоксилаза). Утворений в результаті реакції оксалоацетат перетворюється в малат чи аспартат і в такому вигляді транспортується в клітини обкладки провідного пучка, де в результаті декарбоксилювання вивільняється CO2, що надходить у відновлювальний пентозо-фосфатний цикл. В циклі Кальвіна у C4-рослин, як і в C3-рослин, CO2 перетворюється в триатомний цукор, який іде на синтез сахарози. Транспорт CO2 із клітин мезофіла в клітини обкладки у вигляді проміжних продуктів фіксації дозволяє значно підвищити його концентрацію в місці локалізації рубіско і таким чином значно збільшити її ефективність, уникнувши побічної реакції з киснем і, як наслідок, повністю позбутися фотодихання. Завдяки ефективнішому способу фіксації CO2 відпадає необхідність тримати продихи увесь час відкритими, а отже знижуються втрати води в ході транспірації. Через це C4-рослини здатні рости в посушливих місцях, при високих температурах, в умовах засолення і недостачі CO2. Тим не менш додаткові кроки з фіксації вуглецю в C4-шляху потребують додаткових витрат енергії у формі АТФ. Якщо покласти, що в циклі Кальвіна у C4-рослин, так само як і в C3-рослин, для фіксації однієї молекули CO2 використовується 3 молекули АТФ і 2 молекули НАДФН, то для регенерації акцептора вуглецю в циклі Хетча — Слека, тобто перетворення пірувату в ФЕП, потрібні додаткові 2 молекули АТФ. В результаті на одну молекулу CO2 в C4-шляху витрачається 5 молекул АТФ і 2 молекули НАДФН. Через це C4-рослинам для оптимального росту потрібен вищий рівень інсоляції. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 492012 (xsd:integer)
dbo:wikiPageLength
  • 36137 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1121665004 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • التمثيل الضوئي رباعي الكربون (بالإنجليزية: C4 Carbon fixation)‏ هو إحدى طرائق تثبيت ثنائي أكسيد الكربون خلال عملية التمثيل الضوئي في النبات. توجد هذه الطريقة بشكل رئيسي لدى بعض النباتات العشبية التي تعيش في عموما في مناطق حارة وتسمى نباتات ك4 (بالإنجليزية: C4 plants)‏. تغطي نباتات الـ ك4 حوالي 20 مليون كم مربع من مساحة الأرض وتعتبر مسكناً لخمس المجتمع الإنساني، وتستغل أعشاب ك4 بكثافة في الزراعة الاستوائية. يوجد هذا النمط من التمثيل الضوئي لدى ما يفوق 8000 نوع نباتي من مغطاة البذور موزعة على (18) فصيلة مختلفة، ولكنها لا تمثل سوى أقل من (1%) من أنواع النباتات الأرضية. تنتمي كثير من نباتات ك4 إلى طائفة أحاديات الفلقة وخاصة الفصيلة النجيلية مثل الذرة والذرة البيضاء وقصب السكر والثمام العصوي والحشيشة الفضية ومن ثنائيات الفلقة تتبع معظم نباتات أسرة السرمقاوات نمط ك4. (ar)
  • Hatchův–Slackův cyklus je jeden z cyklů fixace oxidu uhličitého probíhající v temnostní fázi fotosyntézy (sekundární děje). Bývá nazýván také C4-cyklus, protože prvním stabilním meziproduktem je čtyřuhlíkatý oxalacetát. C4-rostliny koncentrují CO2 fixací do malátu, ze kterého je potom uvolňován do Calvinova cyklu. Tímto způsobem výrazně snižují ztráty způsobené fotorespirací, ale zároveň spotřebují více energie (2 ATP navíc), a proto jsou většinou teplomilné nebo tropické. (cs)
  • Τo μονοπάτι C4 είναι ένα μεταβολικό μονοπάτι που υπάρχει στα φυτά (τα λεγόμενα «C4 φυτά») τα οποία φέρουν μια διαφοροποίηση στην δέσμευση και στην αναγωγή του άνθρακα από εκείνες που προβλέπει ο κύκλος του Κάλβιν που ισχύει για τα περισσότερα φυτά.. Από την δεκαετία του 1960 φάνηκε ότι σε αυτά τα φυτά (όπως το καλαμπόκι), τα πρώτα προϊόντα της φωτοσύνθεσης είναι οργανικά οξέα με 4 άτομα άνθρακα. (el)
  • Ĉi tiu artikolo estas pri plantoj. Pri la aliaj signifoj de la dusigna kombino vidu apartigilon C kun nombro C4-plantoj estas tiuj plantoj, ĉe kiuj – kompare al la C3-plantoj – evoluis alia vojo de la . La unua rimarkebla fotosinteza produkto estas C4-molekulo, la , tiel estis elektita la nomumo por diferencigi al plantoj kun "normala" fotosinteza materialŝanĝo. Al la C4-plantoj apartenas unukotiledonaj plantoj kiaj milio, maizo, papiruscipero, sukerkano kaj ĉina kano. (eo)
  • C4型光合成(C4がたこうごうせい)とは、光合成の過程で一般のCO2還元回路であるカルビン・ベンソン回路の他にCO2濃縮のためのC4経路を持つ光合成の一形態である。C4経路の名はCO2固定において、初期産物であるオキサロ酢酸がC4化合物であることに由来する。C4型光合成を行なう植物をC4植物と言い、にも発達した葉緑体が存在するのが特徴である。これに対してカルビン・ベンソン回路しか持たない植物をC3植物という。 1950年代および1960年代初頭に、およびユーリ・カルピロフによって、一部の植物が立証されているを使わずに最初の段階でリンゴ酸およびアスパラギン酸を生産していることが示された。C4経路は最終的にオーストラリアのとC・R・スラックによって1966年に詳細に解明された。このため、C4経路はハッチ=スラック回路と呼ばれることもある。 (ja)
  • C4 식물은 4탄당(C4) 화합물이 관여하는 추가적인 경로(C4회로)를 이용해 가 부족한 환경에서도 광합성의 암반응(광비의존성반응)을 계속할 수 있는 식물을 말한다. 4탄당인 옥살아세트산이 최초의 탄소고정산물이기 때문에 "C4"경로 라는 이름이 붙여졌으며 1966년에 2명의 호주 과학자들 (Hatch& Slack)이 밝혀내었기 때문에 Hatch-Slack 경로라고도 불린다. 캘빈회로(C3회로)의 Rubisco보다 를 효율적으로 고정하는 C4 식물의 탄소고정회로는 의 최초 고정 산물이 4탄당(C4)인 데서 이름이 유래되었다. 대부분의 열대 혹은 아열대성 식물이 이 무리에 속한다. 는 공기 중에 아주 적은 비율(0.03%)로 존재하며 추가적으로 온도가 높고 일조량이 많은 환경의 조건에서 사용이 불안정한 상태가 되면 캘빈회로에 있는 고정효소인 Rubisco는 더 이상 탄소 고정보다는 광호흡(photorespiration)을 하는 비율이 높아지게 된다. 반면에 C4식물은 Rubisco보다 강력한 고정효소인 (Phosphoenolpyruvate carboxylase)를 이용해 탄소 고정을 계속할 수 있다. (ko)
  • Een C4-plant is een type plant die niet alleen gebruikmaakt van de basisvorm van de fotosynthese zoals de C3-plant, maar eerst een tussenstap uitvoert waarbij een verbinding met vier koolstofatomen wordt gemaakt – vandaar de naamgeving. (nl)
  • C4-växter betecknar växter där basmolekylen i fotosyntesreaktionen innehåller 4 stycken kol-atomer. C4-växter har en ekologisk fördel framför C3-växter i varmt och torrt klimat på grund av låg fotorespiration. Exempel på C4-växter är majs. Ytterligare en typ av fotosyntes är CAM-fotosyntes. (sv)
  • C4类二氧化碳固定(英語:C4 carbon fixation)是植物的三种碳固定方式之一,因为第一个可观察得到的产物是一个四碳化合物草酰乙酸,人们就命名其为C4类碳固定。 C4类植物比C3类植物在二氧化碳固定方面更进一步。单子叶植物玉米、中国芒、甘蔗和小米都属于C4类。 (zh)
  • La via de 4 carbonis, o també denominada Via de Hatch-Slack en honor dels seus descobridors, és una sèrie de reaccions bioquímiques de fixació del carboni provinent del CO₂ atmosfèric. El procés consisteix en la captació del Diòxid de carboni en les cèl·lules del mesofil·le de la planta, però en comptes de dur-lo immediatament al cicle de Calvin, les molècules reaccionen amb el PEP( Fosfoenolpiruvat ), sent estimulats per un enzim homònim (PEP Carboxilasa). El producte final entre el PEP i el CO₂ és l'àcid oxalacètic, el qual posteriorment és convertit en àcid màlic, o també anomenat malat. El malat és dut a les cèl·lules de la beina, on és descarboxilat, produint el CO₂ necessari per al cicle de Calvin, a més d'àcid pirúvic. Aquest últim és enviat novament al mesòfil on és transformat per (ca)
  • C4-Pflanzen nutzen einen Stoffwechselweg, um Kohlenstoffdioxid für die Photosynthese zunächst vorzufixieren und erst dann wie C3-Pflanzen im Calvin-Zyklus zu Kohlenhydraten aufzubauen (C4-Photosynthese). Der Name C4 leitet sich vom ersten Fixierungsprodukt ab, welches durch die Assimilation von Kohlenstoffdioxid entsteht. Während dies bei C3-Pflanzen eine Kohlenstoffverbindung mit drei C-Atomen ist (D-3-Phosphoglycerat), findet man in C4-Pflanzen als erstes Oxalacetat, eine Verbindung mit vier C-Atomen. (de)
  • C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960's discovery by Marshall Davidson Hatch and Charles Roger Slack that some plants, when supplied with 14CO2, incorporate the 14C label into four-carbon molecules first. (en)
  • La vía de 4 carbonos, vía C4 o ruta C4, también denominada vía de Hatch-Slack en honor a sus descubridores, es una serie de reacciones bioquímicas de fijación del CO2 atmosférico en plantas. La asimilación del CO2 se realiza mediante las reacciones del ciclo de Calvin; pero en las plantas C4, previa a la carboxilación de la ribulosa-1,5-bisfosfato catalizada por la enzima RuBisCO, que produce ácido fosfoglicérico de tres átomos de carbono, se produce una primera carboxilación del ácido fosfoenolpirúvico (PEP) que origina como producto estable primario un ácido dicarboxílico de cuatro átomos de carbono (málico o aspártico). Este tipo de plantas consigue concentrar el CO2 en torno a la enzima RuBisCO, llegando casi a su nivel de saturación y haciéndola así más eficaz en la segunda carboxilac (es)
  • La fixation du carbone en C4 est l'un des trois modes de fixation du carbone des êtres vivants, parallèlement à la fixation du carbone en C3 et au métabolisme acide crassulacéen (CAM). On l'appelle ainsi en référence à l'oxaloacétate, molécule comportant quatre atomes de carbone formée dès la première étape du processus chez un petit groupe de plantes souvent désignées collectivement comme « plantes en C4 ». (fr)
  • Si definiscono piante C4 alcune specie di piante dei climi caldi ma con ridotta disponibilità idrica, come ad esempio il mais, il sorgo e la canna da zucchero, che usufruiscono di una via differente per la fissazione della CO2 (uno dei passaggi necessari per portare a termine il processo fotosintetico). Queste piante hanno sviluppato una via alternativa al ciclo di Calvin-Benson, organizzata sulla presenza di due tipi di cellule funzionalmente e morfologicamente diverse, le cellule del mesofillo e quelle della guaina del fascio.La fotosintesi C4 è perciò, insieme alla fotosintesi CAM, un adattamento adottato da alcune specie di piante, viventi in climi aridi, per risparmiare acqua nella fase di fissazione del carbonio. Questa via biosintetica fu scoperta nel 1966 da due ricercatori austral (it)
  • Fotosynteza C4, cykl Hatcha-Slacka, cykl Kortschacka-Hatcha-Slacka – rodzaj fotosyntezy, w której dodatkowy mechanizm wiązania dwutlenku węgla poprzedza cykl Calvina-Bensona. Rośliny posiadające zdolność wiązania dwutlenku węgla (CO2) do fosfoenolopirogronianu określane są nazwą rośliny typu C4. Pierwszym trwałym produktem wiązania jest związek o czterech atomach węgla – szczawiooctan. Rośliny te wykształciły mechanizmy anatomiczne i fizjologiczne pozwalające na zwiększenie stężenia CO2 w komórkach, w których zachodzi cykl Calvina-Bensona. W efekcie nie obserwuje się zachodzenia u tych roślin fotooddychania, związanego z reakcją oksygenacji RuBP katalizowaną przez RuBisCo. Reakcje fotooddychania są przyczyną strat energii u roślin C3. Rośliny C4, pomimo konieczności zużycia dodatkowej ener (pl)
  • A fotossíntese C4 é um dos três mecanismos bioquímicos, juntamente com a fotossíntese C3 e fotossíntese das crassuláceas (MAC), utilizado para fazer a fixação do carbono. É assim designado por causa da molécula com 4 átomos de carbono presente no primeiro produto da fixação do carbono nestas plantas, em contraste com a molécula com 3 átomos de carbono das plantas C3. (pt)
  • C4-фотосинтез, или цикл Хэтча — Слэка, — путь связывания углерода, характерный для высших растений, первым продуктом которого является четырёхуглеродная щавелевоуксусная кислота, а не трёхуглеродная 3-фосфоглицериновая кислота, как у большинства растений с обычным C3-фотосинтезом. (ru)
  • C4-фотосинтез, або цикл Хетча — Слека — шлях зв'язування вуглецю, характерний для вищих рослин, першим продуктом якого є чотиривуглецева , а не тривуглецева 3-фосфогліцеринова кислота, як у більшості рослин зі звичайним C3-фотосинтезом. (uk)
rdfs:label
  • تمثيل ضوئي رباعي الكربون (ar)
  • Via de 4 carbonis (ca)
  • Hatchův–Slackův cyklus (cs)
  • C4-Pflanze (de)
  • Μονοπάτι C4 (el)
  • C4-tipa fotosintezo (eo)
  • Vía de 4 carbonos (es)
  • C4 carbon fixation (en)
  • Fixation du carbone en C4 (fr)
  • Piante C4 (it)
  • C4型光合成 (ja)
  • C4 식물 (ko)
  • Fotosynteza C4 (pl)
  • C4-plant (nl)
  • Fotossíntese C4 (pt)
  • C4-фотосинтез (ru)
  • C4-växter (sv)
  • C4-фотосинтез (uk)
  • C4类二氧化碳固定 (zh)
rdfs:seeAlso
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License