An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism).

Property Value
dbo:abstract
  • In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). There is a different Borel conjecture (named for Émile Borel) in set theory. It asserts that every strong measure zero set of reals is countable. Work of Nikolai Luzin and Richard Laver shows that this conjecture is independent of the ZFC axioms. This article is about the Borel conjecture in geometric topology. (en)
  • Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий. (ru)
dbo:wikiPageID
  • 7181855 (xsd:integer)
dbo:wikiPageLength
  • 4767 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1025579794 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий. (ru)
  • In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). (en)
rdfs:label
  • Borel conjecture (en)
  • Гипотеза Бореля (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License