Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/resource/Wigner's_classification
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
unknown
Property
Value
dbo:
description
classification of irreducible representations of the Poincaré group
(en)
dbo:
wikiPageExternalLink
https://archive.org/details/grouptheoryphysi0000ster
dbo:
wikiPageWikiLink
dbr
:Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America
dbr
:Einstein_notation
dbc
:Representation_theory_of_Lie_groups
dbr
:Photon
dbr
:Poincaré_group
dbc
:Mathematical_physics
dbr
:Vacuum
dbr
:Cambridge_University_Press
dbr
:Klein–Gordon_equation
dbr
:Particle_physics_and_representation_theory
dbr
:Hadron
dbr
:Benjamin_Cummings
dbc
:Quantum_field_theory
dbr
:Energy
dbr
:Mathematics
dbr
:Scalar_field
dbr
:Infraparticle
dbr
:Helicity_(particle_physics)
dbr
:Projective_representation
dbr
:Spin_(physics)
dbr
:Annals_of_Mathematics
dbr
:Hyperboloid_model
dbr
:Theoretical_physics
dbr
:Tachyon
dbr
:Lepton
dbr
:Eigenspace
dbr
:Eigenvalue
dbr
:4-momentum_operator
dbr
:Eugene_Wigner
dbr
:Minkowski_space
dbr
:Hyperbolic_space
dbr
:Group_extension
dbr
:Deep_inelastic_scattering
dbr
:Induced_representation
dbr
:Unitary_representation
dbr
:Irreducible_representation
dbr
:Pauli–Lubanski_pseudovector
dbr
:Euclidean_group
dbr
:Spin_group
dbr
:Special_orthogonal_group
dbr
:Trivial_representation
dbr
:System_of_imprimitivity
dbr
:Riemannian_metric
dbr
:Representation_theory_of_the_Galilean_group
dbr
:Representation_theory_of_the_Poincaré_group
dbr
:Group_action_(mathematics)
dbr
:SO(3)
dbr
:Generalized_eigenspaces_of_unbounded_operators
dbr
:Irrep
dbr
:Double_covering_group
dbr
:World_Scientific_Publishing_Company
dbr
:Casimir_invariant
dbr
:Nonnegative
dbr
:Induced_representations
dbr
:Representation_theory_of_the_diffeomorphism_group
dbr
:Representations_of_Lie_groups/algebras
dbr
:Minkowski_inner_product
dbr
:Stabilizer_(group_theory)
dbp:
date
October 2016
(en)
dbp:
reason
What does this mean?
(en)
dbp:
wikiPageUsesTemplate
dbt
:Cite_book
dbt
:Math
dbt
:Cite_journal
dbt
:Clarify
dbt
:Sfrac
dbt
:Mvar
dbt
:Annotated_link
dbt
:Short_description
dct:
subject
dbc
:Representation_theory_of_Lie_groups
dbc
:Mathematical_physics
dbc
:Quantum_field_theory
rdfs:
label
Wigner's classification
(en)
تصنيف فاغنر
(ar)
ウィグナーの分類
(ja)
위그너 분류
(ko)
Классификация Вигнера
(ru)
owl:
sameAs
freebase
:m.01szsx
wikidata
:Q12609547
dbpedia-ja
:ウィグナーの分類
dbpedia-ru
:Классификация_Вигнера
dbpedia-ko
:위그너_분류
dbpedia-ar
:تصنيف_فاغنر
dbpedia-global
:J51j
prov:
wasDerivedFrom
wikipedia-en
:Wigner's_classification?oldid=1291614076&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Wigner's_classification
is
dbo:
wikiPageRedirects
of
dbr
:One-particle_Hilbert_space
dbr
:One_particle_Hilbert_space
dbr
:Wigner_classification
is
dbo:
wikiPageWikiLink
of
dbr
:Vector_boson
dbr
:Continuous_spin_particle
dbr
:Representation_of_a_Lie_group
dbr
:Group_representation
dbr
:List_of_representation_theory_topics
dbr
:Poincaré_group
dbr
:Symmetry
dbr
:Classification_theorem
dbr
:Particle_physics_and_representation_theory
dbr
:Infraparticle
dbr
:Helicity_(particle_physics)
dbr
:Lie_group
dbr
:Index_of_physics_articles_(W)
dbr
:Projective_representation
dbr
:Representation_theory
dbr
:Wightman_axioms
dbr
:Eugene_Wigner
dbr
:List_of_mathematical_topics_in_quantum_theory
dbr
:Pauli–Lubanski_pseudovector
dbr
:Quantum_field_theory
dbr
:Particle
dbr
:List_of_Lie_groups_topics
dbr
:Multiplet
dbr
:Representation_theory_of_the_Galilean_group
dbr
:Representation_theory_of_the_Lorentz_group
dbr
:Representation_theory_of_the_Poincaré_group
dbr
:List_of_things_named_after_Eugene_Wigner
dbr
:One-particle_Hilbert_space
dbr
:One_particle_Hilbert_space
dbr
:Wigner_classification
is
foaf:
primaryTopic
of
wikipedia-en
:Wigner's_classification
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International