An Entity of Type: MathematicalStatement106732169, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations i

Property Value
dbo:abstract
  • معادلات ماكسويل هي مجموعة من المعادلات التفاضلية الجزئية المقترنة التي تشكل، إلى جانب قانون قوة لورنتس، أساس الكهرومغناطيسية التقليدية والبصريات التقليدية والدوائر الكهربائية. توفر المعادلات نموذجًا رياضيًا للتكنولوجيات الكهربائية والبصرية وتكنولوجيا الراديو، مثل توليد القدرة الكهربائية والمحركات الكهربائية والاتصالات اللاسلكية والعدسات والرادار وما إلى ذلك. تصف معادلات ماكسويل آلية توليد الحقول الكهربائية والمغناطيسية بواسطة الشحنات والتيارات والتغييرات في الحقول. إحدى النتائج المهمة للمعادلات هي إثبات أن الحقول الكهربائية والمغناطيسية المتذبذبة تنتشر بسرعة ثابتة (سرعة الضوء c) في الفراغ. يمكن لهذه الموجات المعروفة باسم الإشعاع الكهرومغناطيسي امتلاك أطوال موجية مختلفة لإنتاج طيف كهرومغناطيسي يتراوح بين الموجات الراديوية إلى أشعة غاما. سميت المعادلات نسبةً لعالم الفيزياء والرياضيات جيمس كليرك ماكسويل، الذي نشر شكلًا مبكرًا من المعادلات التي تضمنت قانون قوة لورنتس بين عامي 1861 و1862. استخدم ماكسويل المعادلات أولًا لاقتراح أن الضوء هو ظاهرة كهرومغناطيسية. تمتلك المعادلات شكلين رئيسيين. تتمتع معادلات ماكسويل المجهرية بقابلية شاملة للتطبيق ولكنها غير عملية للحسابات العادية. تربط هذا المعادلات الحقلين الكهربائي والمغناطيسي بالشحنة والتيار الكليين، بما في ذلك الشحنات والتيارات المعقدة في المواد على المقياس الذري. تُعرّف معادلات ماكسويل الجاهرية حقلين إضافيين جديدين يصفان سلوك المادة على نطاق كبير دون الحاجة للأخذ بعين الاعتبار شحنات المقياس الذري والظواهر الكمومية مثل اللف المغزلي. ومع ذلك، يتطلب استخدامها معاملات محددة تجريبيًا لوصف ظواهر استجابة المواد للمؤثرات الكهرومغناطيسية. غالبًا ما يُستخدم مصطلح معادلات ماكسويل في صياغات بديلة مماثلة. من المُفضل استخدام أشكال معادلات ماكسويل المرتكزة على الكمون الكهربائي والكمون المغناطيسي في حل المعادلات بشكل صريح باعتبارها «مسألة قيمة حدية» أو «ميكانيكا تحليلية» أو للاستخدام في ميكانيكا الكم. تؤدي «صياغة موافق التغير» (في الزمكان بدلًا من المكان والزمان بشكل منفصل) إلى ظهور التوافق بين معادلات ماكسويل والنسبية الخاصة. تتوافق «معادلات ماكسويل في الزمكان المنحني»، والتي تُستخدم عادة في فيزياء الطاقة العالية وفيزياء الجاذبية، مع النسبية العامة. في الواقع، طور آينشتاين النسبية الخاصة والعامة للجمع بين سرعة الضوء الثابتة، التي تُعد إحدى نتائج معادلات ماكسويل، ومبدأ أن الحركة النسبية لها أهمية فيزيائية فقط. مثّل نشر المعادلات توحيد الظواهر الموصوفة سابقًا: المغناطيسية والكهرباء والضوء والإشعاع المصاحب له. منذ منتصف القرن العشرين، يعلم العلماء أن معادلات ماكسويل ليست دقيقة تمامًا، بل تمثل الحد التقليدي لنظرية الكهروديناميكا الكمية الأساسية. (ar)
  • Maxwellovy rovnice jsou základní zákony v makroskopické teorii elektromagnetického pole, které zformuloval James Clerk Maxwell v roce 1865. Lze je zapsat buď v integrálním nebo diferenciálním tvaru. V integrálním tvaru popisují elektromagnetické pole v jisté oblasti, kdežto v diferenciálním tvaru v určitém bodu této oblasti. (cs)
  • Les equacions de Maxwell són un conjunt de quatre equacions que, afegint-hi la força de Lorentz, descriuen completament els fenòmens electromagnètics. La gran contribució de James Clerk Maxwell fou reunir en aquestes equacions molts anys de resultats experimentals i investigacions teòriques, deguts a Coulomb, Gauss, Ampère, Faraday i altres, introduint els conceptes de camp i de corrent de desplaçament, i unificant els camps elèctrics i magnètics en un sol concepte: el camp electromagnètic. De les equacions de Maxwell, a més, es desprèn l'existència d'ones electromagnètiques propagant-se amb velocitat igual al valor de la velocitat de la llum c en el buit, amb la qual cosa Maxwell va identificar la llum amb una ona electromagnètica, unificant l'òptica amb l'electromagnetisme. Quan Maxwell va elaborar la seva teoria de l’electromagnetisme , va proposar no quatre sinó vint equacions, les quals descrivien el comportament dels camps elèctrics i magnètics. En les dues dècades que van seguir a la seva mort, el britànic Oliver Heaviside i l’alemany Heinrich Hertz van combinar i simplificar les equacions de Maxwell. Les lleis no van ser escrites per Maxwell, si més no, en la forma vectorial habitual avui dia. Maxwell estava convençut que l'electromagnetisme estaria millor formulat en forma de quaternions, ha havien estat inventats l'any 1843 pel matemàtic irlandès William Rowan Hamilton (1805 – 1865), perquè utilitzaven quatre dimensions i, per tant, podien encabir l'espai tridimensional i el temps. A la seva forma original, les equacions de Maxwell eren un conjunt de 20 expressions de quaternions, 8 equacions dedicades als camps electromagnètics (incloent-hi el ) i 12 que s'ocupen del potencial escalar magnètic, la massa magnètica i la conductivitat magnètica. (ca)
  • Για σχέσεις θερμοδυναμικής, βλέπε τις . Για την ιστορία των εξισώσεων, βλέπε Οι εξισώσεις του Μάξουελ είναι ένα σύνολο των μερικών διαφορικών εξισώσεων που, σε συνδυασμό με το νόμο της δύναμης Λόρεντζ, αποτελούν τα θεμέλια της , της , και των ηλεκτρικών κυκλωμάτων.Τα πεδία αυτά με τη σειρά τους αποτελούν τη βάση των σύγχρονων ηλεκτρικών και των επικοινωνιακών τεχνολογιών. Οι εξισώσεις του Μάξουελ περιγράφουν πώς τα ηλεκτρικά και μαγνητικά πεδία δημιουργούνται και πώς αλληλεπιδρούν μεταξύ τους από τις γομώσεις και τα ρεύματα. Πήραν το όνομά τους από τον Σκοτσέζο φυσικό και μαθηματικό Τζέιμς Κλερκ Μάξγουελ, ο οποίος δημοσίευσε μια πρώιμη μορφή των εξισώσεων αυτών μεταξύ 1861 και 1862. Οι εξισώσεις έχουν δύο σημαντικές παραλλαγές. Η "μικροσκοπική προσέγγιση" των εξισώσεων Μάξουελ χρησιμοποιεί ολικά φορτία και ρεύματα, συμπεριλαμβανομένων των περίπλοκων φορτίων και ρευμάτων των υλικών σε ατομική κλίμακα. Έχει καθολική εφαρμογή, αλλά συνήθως είναι ανέφικτο να υπολογιστεί. Η «μακροσκοπική προσέγγιση» των εξισώσεων Μάξουελ ορίζει δύο νέα βοηθητικά πεδία που περιγράφουν μεγάλης κλίμακας συμπεριφορές χωρίς να χρειάζεται να εξεταστούν αυτά τα στοιχεία ατομική κλίμακα, αλλά απαιτεί τη χρήση των παραμέτρων που χαρακτηρίζουν τις ηλεκτρομαγνητικές ιδιότητες των σχετικών υλικών. Ο όρος "εξισώσεις του Μάξγουελ" χρησιμοποιείται συχνά για άλλες μορφές των εξισώσεων Μάξουελ. Για παραδειγμα, οι χρησιμοποιούνται συνήθως σε υψηλή ενέργεια και της βαρυτική Φυσική. Αυτές οι διατυπώσεις ορίζονται στον χωροχρόνο καλύτερα από ότι στον χώρο και στον χρόνο χωριστά, είναι προδήλως συμβατές με την ειδική και την γενική σχετικότητα. Στην κβαντική μηχανική και οι εκδόσεις των εξισώσεων Μάξουελ με βάση τα και προτιμώνται. Από τα μέσα του 20ου αιώνα, έχει γίνει κατανοητό ότι οι εξισώσεις του Μάξουελ δεν είναι ακριβείς νόμοι του σύμπαντος, αλλά είναι μια κλασική προσέγγιση με την πιο ακριβή και θεμελιώδη θεωρία της κβαντικής ηλεκτροδυναμικής. Στις περισσότερες περιπτώσεις, όμως, η κβαντικές αποκλίσεις από τις εξισώσεις του Μάξουελ είναι αφάνταστα μικρές. Εξαιρέσεις συμβαίνουν όταν η σωματιδιακή φύση του φωτός είναι σημαντική ή για πολύ ισχυρά ηλεκτρικά πεδία. (el)
  • Die Maxwell-Gleichungen von James Clerk Maxwell (1831–1879) beschreiben die Phänomene des Elektromagnetismus. Sie sind damit ein wichtiger Teil des modernen physikalischen Weltbildes. Die Gleichungen beschreiben, wie elektrische und magnetische Felder untereinander sowie mit elektrischen Ladungen und elektrischem Strom unter gegebenen Randbedingungen zusammenhängen. Zusammen mit der Lorentzkraft erklären sie alle Phänomene der klassischen Elektrodynamik. Sie bilden daher auch die theoretische Grundlage der Optik und der Elektrotechnik. Die Gleichungen sind nach dem schottischen Physiker James Clerk Maxwell benannt, der sie von 1861 bis 1864 erarbeitet hat. Er kombinierte dabei das Durchflutungsgesetz und das Gaußsche Gesetz mit dem Induktionsgesetz und führte zusätzlich, um die Kontinuitätsgleichung nicht zu verletzen, den ebenfalls nach ihm benannten Verschiebungsstrom ein. Die Maxwell-Gleichungen sind ein spezielles System von linearen partiellen Differentialgleichungen erster Ordnung. Sie lassen sich auch in integraler Form, in differentialgeometrischer Form und in kovarianter Form darstellen. (de)
  • La ekvacioj de Maxwell estas kvar ekvacioj kiuj priskribas la konduton de elektraj kaj magnetaj kampoj. Ili estis eltrovitaj de James Clerk Maxwell en 1864.Konsekvence al la leĝo de Lenz-Faraday pri la variado de magneta flukso , la laboro W de la elektromagneta forto (de Lorentz/Laplace) sur elektra konduktilo, kiu estas trairita de elektra kurento I, estas : estas la variado de la magneta fluo, kiu trairis la surfacon de la elektra konduktilo, aŭ kiun trapasas la elektra konduktilo. En la sekvantaj ekvacioj, dikliteraj simboloj reprezentas vektorojn, dum kursivaj simboloj reprezentas skalarojn. La ekvacioj de Maxwell estas ĝeneralaj, sed sekvas iliaj aplikoj laŭ la konsiderataj medioj. (eo)
  • Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético.​ (es)
  • Elektromagnetismoan, Maxwellen ekuazioak James Clerk Maxwell fisikari britainiarrak aurkezturiko ekuazio sorta bat da, zeinetan, eremu elektriko, eremu magnetiko, karga elektriko eta korronte elektrikoaren arteko erlazioak zehazten diren. Gaur egungo elektromagnetismoaren oinarria dira ekuazio haueketa elektromagnetismoaren teoria gehiena bertatik ondoriozta daiteke. Nahiz eta Maxwell bera ez zen izan ekuazio indibidualen sortzailea, bera izan zen ekuaziook era koherente batean batu eta lotu zituen lehena. Garrantzitsuago dena, Ampère-ren legean beste osagai bat sartu zuen, Maxwellen desplazamendu korrontea deituko zitzaiona geroago. Lege honen Maxwellen bertsio hobetuak uhin elektromagnetikoen uhin ekuazioa ondorioztatzeko behar den ekuazio sorta lortzeko bidea zabaltzen du. Nahiz eta Maxwellen ekuazioak erlatibitate berezia baino lehenagoak diren, Coulomb-en legea eta erlatibitate berezia erabiliz ondoriozta daitezke, karga elektrikoa aldatzen ez dela kontsideratuz. Hori dela eta, honek grabitazioarekin izan dezakeen paralelotasuna azter daiteke, arrazonamendu berdina aplikatu baitaiteke Newton-en grabitazio unibertsalaren legearekin, era honetan, grabitaziorako Maxwellen ekuazio baliokide batzuk gara daitezke. (eu)
  • Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside. An important consequence of Maxwell's equations is that they demonstrate how fluctuating electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays. The equations have two major variants. The microscopic equations have universal applicability but are unwieldy for common calculations. They relate the electric and magnetic fields to total charge and total current, including the complicated charges and currents in materials at the atomic scale. The macroscopic equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic scale charges and quantum phenomena like spins. However, their use requires experimentally determined parameters for a phenomenological description of the electromagnetic response of materials. The term "Maxwell's equations" is often also used for . Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics. The covariant formulation (on spacetime rather than space and time separately) makes the compatibility of Maxwell's equations with special relativity manifest. Maxwell's equations in curved spacetime, commonly used in high energy and gravitational physics, are compatible with general relativity. In fact, Albert Einstein developed special and general relativity to accommodate the invariant speed of light, a consequence of Maxwell's equations, with the principle that only relative movement has physical consequences. The publication of the equations marked the unification of a theory for previously separately described phenomena: magnetism, electricity, light and associated radiation.Since the mid-20th century, it has been understood that Maxwell's equations do not give an exact description of electromagnetic phenomena, but are instead a classical limit of the more precise theory of quantum electrodynamics. (en)
  • Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales. Elles donnent ainsi un cadre mathématique précis au concept fondamental de champ introduit en physique par Faraday dans les années 1830. Ces équations montrent notamment qu'en régime stationnaire, les champs électrique et magnétique sont indépendants l'un de l'autre, alors qu'ils ne le sont pas en régime variable. Dans le cas le plus général, il faut donc parler du champ électromagnétique, la dichotomie électrique-magnétique étant une vue de l'esprit. Elles mettent également en évidence les équations d'ondes qui gèrent la propagation des ondes électromagnétiques. Dans leur forme moderne, le champ électromagnétique est représenté par un objet mathématique unique, le tenseur électromagnétique dont certaines composantes s'identifient à celles du champ électrique et d'autres à celles du champ magnétique. (fr)
  • Persamaan Maxwell adalah himpunan empat persamaan diferensial parsial yang mendeskripsikan sifat-sifat medan listrik dan medan magnet dan hubungannya dengan sumber-sumbernya, muatan listrik dan arus listrik, menurut teori . Keempat persamaan ini digunakan untuk menunjukkan bahwa cahaya adalah gelombang elektromagnetik. Secara terpisah, keempat persamaan ini masing-masing disebut sebagai Hukum Gauss, , Hukum induksi Faraday, dan Hukum Ampere. Keempat persamaan ini dengan merupakan kumpulan hukum lengkap dari elektrodinamika klasik. (in)
  • Le equazioni di Maxwell (così dette poiché elaborate da James Clerk Maxwell) sono un sistema di equazioni differenziali alle derivate parziali lineari accoppiate (due vettoriali e due scalari, per un totale di otto equazioni scalari) che, insieme alla forza di Lorentz, costituiscono le leggi fondamentali che governano l'interazione elettromagnetica. Utilizzate nella fisica classica, esprimono l'evoluzione temporale e i vincoli a cui è soggetto il campo elettromagnetico in relazione alle distribuzioni di carica e corrente elettrica da cui è generato. Raggruppano ed estendono le leggi dell'elettromagnetismo, note fino alla metà del XIX secolo, tra cui la legge di Gauss per il campo elettrico e la legge di Faraday. Tale sintesi fu compiuta da Maxwell che, aggiungendo la corrente di spostamento alla legge di Ampère, rese simmetriche le equazioni che descrivono il campo elettrico e il campo magnetico in modo classico, ovvero non quantistico. Si rende visibile in questo modo come essi siano due manifestazioni di una stessa entità, il campo elettromagnetico. Il settore dell'elettromagnetismo che studia i campi elettromagnetici trascurandone gli aspetti quantistici è l'elettrodinamica classica. Le quattro equazioni mostrano come i campi elettrici dinamici, cioè variabili nel tempo, sono in grado di generare campi magnetici e viceversa, unificando così, a livello teorico e in maniera perfettamente simmetrica, l'elettricità con il magnetismo, già espressa sperimentalmente nella legge di Faraday-Neumann-Lenz. Lo stesso Maxwell osservò che le equazioni ammettono soluzioni ondulatorie, il che condusse alla scoperta delle onde elettromagnetiche e in particolare fu spiegata la natura della luce, fino ad allora oggetto di varie speculazioni teoriche. I campi elettromagnetici, introdotti inizialmente come entità matematica, acquistarono una loro propria realtà fisica potendo esistere indipendentemente dalle sorgenti che li hanno generati. (it)
  • 맥스웰 방정식(-方程式, Maxwell's equations)은 전기와 자기의 발생, 전기장과 자기장, 전하 밀도와 전류 밀도의 형성을 나타내는 4개의 편미분 방정식이다. 맥스웰 방정식은 빛 역시 전자기파의 하나임을 보여준다. 각각의 방정식은 가우스 법칙, 가우스 자기 법칙, 패러데이 전자기 유도 법칙, 앙페르 회로 법칙으로 불린다. 각각의 방정식을 제임스 클러크 맥스웰이 종합한 이후 맥스웰 방정식으로 불리게 되었다. 전자기역학은 맥스웰 방정식과 로런츠 힘 법칙으로 요약된다. 로랜츠 힘은 맥스웰 방정식으로부터 유도될 수 있다. (ko)
  • マクスウェルの方程式(マクスウェルのほうていしき、英: Maxwell's equations)は、電磁場を記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれる。マクスウェルはマックスウェルとも表記され、マクスウェル方程式、マックスウェル方程式などと書かれることも多い。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお電磁気学の単位系は国際単位系に発展したMKSA単位系のほかガウス単位系などがあり、単位系によってマクスウェルの方程式の表式における係数が異なるが、以下では原則として国際単位系を用いることとする。 (ja)
  • As equações de Maxwell são um grupo de equações diferenciais parciais que, juntamente com a lei da força de Lorentz, compõem a base do eletromagnetismo clássico no qual está embebida toda a óptica clássica. O desenvolvimento das equações de Maxwell, e o entendimento do eletromagnetismo, contribuíram significativamente para toda uma revolução tecnológica iniciada no final do século XIX e continuada durante as décadas seguintes. As equações de Maxwell podem ser divididas em duas grandes variações. O grupo microscópico das equações de Maxwell utiliza os conceitos de carga total e corrente total, que inclui as cargas e correntes em níveis atômicos, que comumente são difíceis de se calcular. O grupo macroscópico das equações de Maxwell define os dois novos campos auxiliares que podem evitar a necessidade de ter que se conhecer tais cargas e correntes em dimensões atômicas. As equações de Maxwell são assim chamadas em homenagem ao físico e matemático escocês James Clerk Maxwell, já que podem ser encontradas, sob outras notações matemáticas, em um artigo dividido em quatro partes, intitulado (Acerca das linhas físicas de força), que Maxwell publicou entre 1861 e 1862. A forma matemática da lei da força de Lorentz também está presente neste artigo. Torna-se útil, geralmente, escrever as equações de Maxwell em outras formas matemáticas. Estas representações matemáticas, ainda que possam ser completamente diferentes uma das outras, descrevem basicamente os mesmos fenômenos físicos e ainda são chamadas de "equações de Maxwell". Uma formulação em termos de tensores covariantes de campo é usada na relatividade restrita, por exemplo. Dentro da mecânica quântica, é preferida uma versão baseada em potenciais elétrico e magnético. (pt)
  • De wetten van Maxwell, ook wel maxwellvergelijkingen of maxwelltheorie genoemd, zijn de vier natuurkundige wetten van het elektromagnetisme, de theorie van elektrische en magnetische velden en elektromagnetische straling zoals licht. (nl)
  • Równania Maxwella – cztery podstawowe równania elektrodynamiki klasycznej zebrane i rozwinięte przez Jamesa Clerka Maxwella. Opisują one właściwości pola elektrycznego i magnetycznego oraz zależności między tymi polami. Z równań Maxwella można wyprowadzić między innymi równania falowe fali elektromagnetycznej oraz wyznaczyć prędkość takiej fali propagującej (rozchodzącej się) w próżni (prędkość światła). (pl)
  • Maxwells elektromagnetiska ekvationer är fyra partiella differentialekvationer som beskriver elektriska och magnetiska fält. De sammanställdes av Oliver Heaviside, och rättade till bristerna och tvetydigheterna i James Clerk Maxwells ursprungliga 20 olika ekvationer. (sv)
  • Рівня́ння Ма́ксвелла — це основні рівняння класичної електродинаміки, які описують електричне та магнітне поле, створене зарядами й струмами. (uk)
  • 馬克士威方程組(英語:Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。 (zh)
  • Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности). (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19737 (xsd:integer)
dbo:wikiPageLength
  • 81740 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1057743009 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/m063140 (en)
dbp:project
  • Wikiversity (en)
dbp:text
dbp:title
  • Maxwell equations (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Maxwellovy rovnice jsou základní zákony v makroskopické teorii elektromagnetického pole, které zformuloval James Clerk Maxwell v roce 1865. Lze je zapsat buď v integrálním nebo diferenciálním tvaru. V integrálním tvaru popisují elektromagnetické pole v jisté oblasti, kdežto v diferenciálním tvaru v určitém bodu této oblasti. (cs)
  • Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético.​ (es)
  • Persamaan Maxwell adalah himpunan empat persamaan diferensial parsial yang mendeskripsikan sifat-sifat medan listrik dan medan magnet dan hubungannya dengan sumber-sumbernya, muatan listrik dan arus listrik, menurut teori . Keempat persamaan ini digunakan untuk menunjukkan bahwa cahaya adalah gelombang elektromagnetik. Secara terpisah, keempat persamaan ini masing-masing disebut sebagai Hukum Gauss, , Hukum induksi Faraday, dan Hukum Ampere. Keempat persamaan ini dengan merupakan kumpulan hukum lengkap dari elektrodinamika klasik. (in)
  • 맥스웰 방정식(-方程式, Maxwell's equations)은 전기와 자기의 발생, 전기장과 자기장, 전하 밀도와 전류 밀도의 형성을 나타내는 4개의 편미분 방정식이다. 맥스웰 방정식은 빛 역시 전자기파의 하나임을 보여준다. 각각의 방정식은 가우스 법칙, 가우스 자기 법칙, 패러데이 전자기 유도 법칙, 앙페르 회로 법칙으로 불린다. 각각의 방정식을 제임스 클러크 맥스웰이 종합한 이후 맥스웰 방정식으로 불리게 되었다. 전자기역학은 맥스웰 방정식과 로런츠 힘 법칙으로 요약된다. 로랜츠 힘은 맥스웰 방정식으로부터 유도될 수 있다. (ko)
  • マクスウェルの方程式(マクスウェルのほうていしき、英: Maxwell's equations)は、電磁場を記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれる。マクスウェルはマックスウェルとも表記され、マクスウェル方程式、マックスウェル方程式などと書かれることも多い。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお電磁気学の単位系は国際単位系に発展したMKSA単位系のほかガウス単位系などがあり、単位系によってマクスウェルの方程式の表式における係数が異なるが、以下では原則として国際単位系を用いることとする。 (ja)
  • De wetten van Maxwell, ook wel maxwellvergelijkingen of maxwelltheorie genoemd, zijn de vier natuurkundige wetten van het elektromagnetisme, de theorie van elektrische en magnetische velden en elektromagnetische straling zoals licht. (nl)
  • Równania Maxwella – cztery podstawowe równania elektrodynamiki klasycznej zebrane i rozwinięte przez Jamesa Clerka Maxwella. Opisują one właściwości pola elektrycznego i magnetycznego oraz zależności między tymi polami. Z równań Maxwella można wyprowadzić między innymi równania falowe fali elektromagnetycznej oraz wyznaczyć prędkość takiej fali propagującej (rozchodzącej się) w próżni (prędkość światła). (pl)
  • Maxwells elektromagnetiska ekvationer är fyra partiella differentialekvationer som beskriver elektriska och magnetiska fält. De sammanställdes av Oliver Heaviside, och rättade till bristerna och tvetydigheterna i James Clerk Maxwells ursprungliga 20 olika ekvationer. (sv)
  • Рівня́ння Ма́ксвелла — це основні рівняння класичної електродинаміки, які описують електричне та магнітне поле, створене зарядами й струмами. (uk)
  • معادلات ماكسويل هي مجموعة من المعادلات التفاضلية الجزئية المقترنة التي تشكل، إلى جانب قانون قوة لورنتس، أساس الكهرومغناطيسية التقليدية والبصريات التقليدية والدوائر الكهربائية. توفر المعادلات نموذجًا رياضيًا للتكنولوجيات الكهربائية والبصرية وتكنولوجيا الراديو، مثل توليد القدرة الكهربائية والمحركات الكهربائية والاتصالات اللاسلكية والعدسات والرادار وما إلى ذلك. تصف معادلات ماكسويل آلية توليد الحقول الكهربائية والمغناطيسية بواسطة الشحنات والتيارات والتغييرات في الحقول. إحدى النتائج المهمة للمعادلات هي إثبات أن الحقول الكهربائية والمغناطيسية المتذبذبة تنتشر بسرعة ثابتة (سرعة الضوء c) في الفراغ. يمكن لهذه الموجات المعروفة باسم الإشعاع الكهرومغناطيسي امتلاك أطوال موجية مختلفة لإنتاج طيف كهرومغناطيسي يتراوح بين الموجات الراديوية إلى أشعة غاما. سميت المعادلات نسبةً لعالم الفيزياء والرياضيات جيمس كل (ar)
  • Les equacions de Maxwell són un conjunt de quatre equacions que, afegint-hi la força de Lorentz, descriuen completament els fenòmens electromagnètics. La gran contribució de James Clerk Maxwell fou reunir en aquestes equacions molts anys de resultats experimentals i investigacions teòriques, deguts a Coulomb, Gauss, Ampère, Faraday i altres, introduint els conceptes de camp i de corrent de desplaçament, i unificant els camps elèctrics i magnètics en un sol concepte: el camp electromagnètic. De les equacions de Maxwell, a més, es desprèn l'existència d'ones electromagnètiques propagant-se amb velocitat igual al valor de la velocitat de la llum c en el buit, amb la qual cosa Maxwell va identificar la llum amb una ona electromagnètica, unificant l'òptica amb l'electromagnetisme. (ca)
  • Για σχέσεις θερμοδυναμικής, βλέπε τις . Για την ιστορία των εξισώσεων, βλέπε Οι εξισώσεις του Μάξουελ είναι ένα σύνολο των μερικών διαφορικών εξισώσεων που, σε συνδυασμό με το νόμο της δύναμης Λόρεντζ, αποτελούν τα θεμέλια της , της , και των ηλεκτρικών κυκλωμάτων.Τα πεδία αυτά με τη σειρά τους αποτελούν τη βάση των σύγχρονων ηλεκτρικών και των επικοινωνιακών τεχνολογιών. Οι εξισώσεις του Μάξουελ περιγράφουν πώς τα ηλεκτρικά και μαγνητικά πεδία δημιουργούνται και πώς αλληλεπιδρούν μεταξύ τους από τις γομώσεις και τα ρεύματα. Πήραν το όνομά τους από τον Σκοτσέζο φυσικό και μαθηματικό Τζέιμς Κλερκ Μάξγουελ, ο οποίος δημοσίευσε μια πρώιμη μορφή των εξισώσεων αυτών μεταξύ 1861 και 1862. (el)
  • Die Maxwell-Gleichungen von James Clerk Maxwell (1831–1879) beschreiben die Phänomene des Elektromagnetismus. Sie sind damit ein wichtiger Teil des modernen physikalischen Weltbildes. Die Gleichungen beschreiben, wie elektrische und magnetische Felder untereinander sowie mit elektrischen Ladungen und elektrischem Strom unter gegebenen Randbedingungen zusammenhängen. Zusammen mit der Lorentzkraft erklären sie alle Phänomene der klassischen Elektrodynamik. Sie bilden daher auch die theoretische Grundlage der Optik und der Elektrotechnik. Die Gleichungen sind nach dem schottischen Physiker James Clerk Maxwell benannt, der sie von 1861 bis 1864 erarbeitet hat. Er kombinierte dabei das Durchflutungsgesetz und das Gaußsche Gesetz mit dem Induktionsgesetz und führte zusätzlich, um die Kontinuität (de)
  • La ekvacioj de Maxwell estas kvar ekvacioj kiuj priskribas la konduton de elektraj kaj magnetaj kampoj. Ili estis eltrovitaj de James Clerk Maxwell en 1864.Konsekvence al la leĝo de Lenz-Faraday pri la variado de magneta flukso , la laboro W de la elektromagneta forto (de Lorentz/Laplace) sur elektra konduktilo, kiu estas trairita de elektra kurento I, estas : estas la variado de la magneta fluo, kiu trairis la surfacon de la elektra konduktilo, aŭ kiun trapasas la elektra konduktilo. La ekvacioj de Maxwell estas ĝeneralaj, sed sekvas iliaj aplikoj laŭ la konsiderataj medioj. (eo)
  • Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations i (en)
  • Elektromagnetismoan, Maxwellen ekuazioak James Clerk Maxwell fisikari britainiarrak aurkezturiko ekuazio sorta bat da, zeinetan, eremu elektriko, eremu magnetiko, karga elektriko eta korronte elektrikoaren arteko erlazioak zehazten diren. Gaur egungo elektromagnetismoaren oinarria dira ekuazio haueketa elektromagnetismoaren teoria gehiena bertatik ondoriozta daiteke. Nahiz eta Maxwellen ekuazioak erlatibitate berezia baino lehenagoak diren, Coulomb-en legea eta erlatibitate berezia erabiliz ondoriozta daitezke, karga elektrikoa aldatzen ez dela kontsideratuz. (eu)
  • Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales. Elles donnent ainsi un cadre mathématique précis au concept fondamental de champ introduit en physique par Faraday dans les années 1830. (fr)
  • Le equazioni di Maxwell (così dette poiché elaborate da James Clerk Maxwell) sono un sistema di equazioni differenziali alle derivate parziali lineari accoppiate (due vettoriali e due scalari, per un totale di otto equazioni scalari) che, insieme alla forza di Lorentz, costituiscono le leggi fondamentali che governano l'interazione elettromagnetica. Utilizzate nella fisica classica, esprimono l'evoluzione temporale e i vincoli a cui è soggetto il campo elettromagnetico in relazione alle distribuzioni di carica e corrente elettrica da cui è generato. (it)
  • As equações de Maxwell são um grupo de equações diferenciais parciais que, juntamente com a lei da força de Lorentz, compõem a base do eletromagnetismo clássico no qual está embebida toda a óptica clássica. O desenvolvimento das equações de Maxwell, e o entendimento do eletromagnetismo, contribuíram significativamente para toda uma revolução tecnológica iniciada no final do século XIX e continuada durante as décadas seguintes. (pt)
  • Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фунда (ru)
  • 馬克士威方程組(英語:Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 (zh)
rdfs:label
  • Maxwell's equations (en)
  • معادلات ماكسويل (ar)
  • Equacions de Maxwell (ca)
  • Maxwellovy rovnice (cs)
  • Maxwell-Gleichungen (de)
  • Εξισώσεις Μάξγουελ (el)
  • Ekvacioj de Maxwell (eo)
  • Ecuaciones de Maxwell (es)
  • Maxwellen ekuazioak (eu)
  • Persamaan Maxwell (in)
  • Équations de Maxwell (fr)
  • Equazioni di Maxwell (it)
  • マクスウェルの方程式 (ja)
  • 맥스웰 방정식 (ko)
  • Wetten van Maxwell (nl)
  • Równania Maxwella (pl)
  • Equações de Maxwell (pt)
  • Уравнения Максвелла (ru)
  • Maxwells ekvationer (sv)
  • Рівняння Максвелла (uk)
  • 馬克士威方程組 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:discipline of
is dbp:knownFor of
is dbp:title of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License