An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Function in analytic number theory

Property Value
dbo:description
  • mathematische Funktion (de)
  • function in analytic number theory (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:date
  • 2011-07-26 (xsd:date)
dbp:proof
  • With some simple algebra performed on finite sums, we can write for any complex s Now if and , the factor multiplying is zero, and where denotes a special Riemann sum approximating the integral of over . For i.e., , we get Otherwise, if , then , which yields (en)
  • If is real and strictly positive, the series converges since the regrouped terms alternate in sign and decrease in absolute value to zero. According to a theorem on uniform convergence of Dirichlet series first proven by Cahen in 1894, the function is then analytic for , a region which includes the line . Now we can define correctly, where the denominators are not zero, or Since is irrational, the denominators in the two definitions are not zero at the same time except for , and the function is thus well defined and analytic for except at . We finally get indirectly that when : (en)
dbp:title
  • Direct proof of by Sondow (en)
  • Indirect proof of following Widder (en)
dbp:url
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Dirichlet eta function (en)
  • دالة إيتا لدركليه (ar)
  • Funció eta de Dirichlet (ca)
  • Funkcio η (eo)
  • Dirichletsche Etafunktion (de)
  • Función eta de Dirichlet (es)
  • Fonction êta de Dirichlet (fr)
  • Funzione eta di Dirichlet (it)
  • 디리클레 에타 함수 (ko)
  • Dirichlet-èta-functie (nl)
  • Funkcja η (pl)
  • Função eta de Dirichlet (pt)
  • Dirichlets etafunktion (sv)
  • Эта-функция Дирихле (ru)
  • 狄利克雷η函数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International