About: Partially ordered set     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPartially_ordered_set

In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word partial in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable.

AttributesValues
rdfs:label
  • مجموعة مرتبة جزئيا
  • Conjunt parcialment ordenat
  • Uspořádaná množina
  • Partordo
  • Conjunto parcialmente ordenado
  • Partially ordered set
  • Ensemble partiellement ordonné
  • 順序集合
  • 부분 순서 집합
  • Częściowy porządek
  • Partiële orde
  • Conjunto parcialmente ordenado
  • Частично упорядоченное множество
  • Частково впорядкована множина
  • Partiellt ordnad mängd
  • 偏序关系
rdfs:comment
  • في الرياضيات، وبالتحديد في نظرية الترتيب، مجموعة مرتبة جزئيا (بالإنجليزية: Partially ordered set) تصف بشكل رسمي وتعمم المفهوم الحدسي لترتيب وتنظيم عناصر مجموعة ما.
  • En matemàtiques, especialment en teoria de l'ordre, un conjunt parcialment ordenat (o Poset, de l'anglès partially ordered set) és un conjunt equipat amb una relació binària d'ordre parcial. Aquesta formalitza el concepte intuïtiu d'ordre, seqüència, o arranjament dels elements del conjunt. Un tal ordre no necessàriament ha de ser total, és a dir, no es necessita que es puguin comparar els uns amb els altres tots els elements del conjunt, Tot i així, això pot ocórrer en alguns casos (en altres paraules, l'ordre total és un cas particular de l'ordre parcial).
  • Partordo estas rilato, kiu estas refleksiva, transitiva kaj malsimetria.
  • En matemáticas, especialmente en teoría del orden, un conjunto parcialmente ordenado (o poset, del inglés partially ordered set) es un conjunto equipado con una relación binaria de orden parcial, que formaliza el concepto intuitivo de orden, secuencia, o arreglo de los elementos del conjunto. Tal orden no necesariamente debe ser total, es decir, no necesariamente deben de poder compararse todos los elementos con todos los otros elementos del conjunto, sin embargo esto puede ocurrir en algunos casos (en otras palabras, el orden total es un caso particular del orden parcial).
  • 순서론에서, 부분 순서(部分順序, 영어: partial order) 또는 반순서(半順序)는 순서·나열 등의 개념을 추상화한 이항 관계이다. 부분 순서를 갖춘 집합을 부분 순서 집합(部分順序集合, 영어: partially ordered set, poset)이라고 한다. 이는 전순서 집합과 달리 모든 원소가 비교 가능할 필요는 없으며, 원순서 집합과 달리 순서가 같은 여러 원소는 존재하지 않아야 한다. 유한 부분 순서 집합은 하세 도형을 통해 나타낼 수 있다. 예를 들어, 가계도에서의 관계는 부분 순서이다. 어떤 두 사람은 조상과 후손의 관계이나, 어떤 두 사람은 서로가 서로의 후손이 아니며, 어떤 이도 다른 이의 조상이자 후손일 수는 없다.
  • In de ordetheorie, een deelgebied van de wiskunde, is een partiële orde of partiële ordening op een verzameling een relatie op die verzameling, meestal genoteerd als "", die aangeeft welke van de elementen met elkaar vergeleken kunnen worden als volgend op elkaar. In een partiële orde worden niet noodzakelijk alle elementen met elkaar vergeleken, maar kunnen er paren elementen zijn waarvan niet uitgemaakt is welke van de twee in de orde voorafgaat aan de ander. In een extreem geval is zelfs geen enkel tweetal vergelijkbaar. Een partiële orde is een generalisatie van het begrip totale orde, waarin van elk tweetal elementen vaststaat welke van de twee de opvolger is van het andere.
  • Na matemática, especialmente na Teoria da ordem, um conjunto parcialmente ordenado (poset, em inglês partially ordered set) é um conjunto equipado com uma relação binária de ordem parcial. Esta relação formaliza o conceito intuitivo de ordem, sequência, ou arrumação dos elementos do conjunto.Tal ordem não precisa necessariamente ser total, ou seja, não é necessário que todos os elementos do conjunto possam ser comparados uns com os outros; contudo isto pode ocorrer em alguns casos.Em outras palavras, a ordenação total é um caso particular da ordenação parcial.
  • Częściowy porządek (ang. partial order) – relacja zwrotna, przechodnia i (słabo) antysymetryczna albo równoważnie antysymetryczny praporządek. W matematyce dyskretnej, para gdzie jest zbiorem, a relacją częściowego porządku określoną na bywa nazywana posetem (z ang. partially ordered set – zbiór częściowo uporządkowany).
  • Части́чно упоря́доченное мно́жество — математическое понятие, которое формализует интуитивные идеи упорядочения, расположения элементов в определённой последовательности. Неформально, множество частично упорядочено, если указано, какие элементы следуют за какими (какие элементы больше каких). В общем случае может оказаться так, что некоторые пары элементов не связаны отношением «следует за». В качестве абстрактного примера можно привести совокупность подмножеств множества из трёх элементов (булеан данного множества), упорядоченную по отношению включения.
  • En partiellt ordnad mängd eller partialordnad mängd, ibland förkortat pomängd, är inom matematiken en mängd utrustad med en speciell binär relation, en så kallad partiell ordning eller partialordning. En partiell ordning beskriver hur element i en mängd är ordnade, vilka element som kommer "före" eller "efter" andra element. Till skillnad från en totalt ordnad mängd kan element i en partiellt ordnad mängd vara ojämförbara, det kan finnas par av element där det ena elementet varken kommer före eller efter eller är lika med det andra elementet. Partiellt ordnade ändliga mängder kan visualiseras med hjälp av Hassediagram.
  • 偏序集合(英語:Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了。
  • Uspořádaná množina je množina, na které je definováno uspořádání. Uspořádání je binární relace, která je reflexivní, tranzitivní a (slabě) antisymetrická. Definice nevyžaduje, aby každé dva prvky množiny byly porovnatelné, proto se také používá název částečně uspořádaná množina. Uspořádání použité v definici je neostré (podmínka reflexivity říká, že pro každý prvek množiny je ). Relaci uspořádání často značíme ≤, ⩽, případně (pokud chceme zdůraznit, že se nejedná o relaci „menší nebo rovno“ na číslech) ⪯ nebo ⪳.
  • In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word partial in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable.
  • En mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
  • 数学において順序集合(じゅんじょしゅうごう、英: ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元 a, b に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、英: partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 (totally ordered set) という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 S = {a, b} において {a} と {b} はいずれも他方を包含していないので S の冪集合は全順序ではない。
  • Частково впорядкованою множиною називається множина із заданим на ній рефлексивним, антисиметричним та транзитивним бінарним відношенням (називається — відношення нестрогого порядку). Загалом це математичне поняття, яке формалізує та узагальнює інтуїтивні ідеї впорядкування, розташування елементів у певній послідовності та ранжування елементів множини. Неформально, множина є частково впорядкованою, якщо вказано, які елементи слідують за якими (які елементи більші яких). У загальному випадку може виявитися так, що деякі пари елементів не пов'язані відношенням «слідкує за».
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software