An Entity of Type : yago:WikicatOrdinalNumbers, within Data Space : dbpedia.org associated with source document(s)

In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element matches exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements). In the special case when X is totally ordered, monotonicity of f implies monotonicity of its inverse. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes.

AttributesValues
rdf:type
rdfs:label
• Order type
rdfs:comment
• In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element matches exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements). In the special case when X is totally ordered, monotonicity of f implies monotonicity of its inverse. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
title
• Order Type
urlname
• OrderType
has abstract
• In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element matches exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements). In the special case when X is totally ordered, monotonicity of f implies monotonicity of its inverse. For example, the set of integers and the set of even integers have the same order type, because the mapping is a bijection that preserves the order. But the set of integers and the set of rational numbers (with the standard ordering) do not have the same order type, because even though the sets are of the same size (they are both countably infinite), there is no order-preserving bijective mapping between them. To these two order types we may add two more: the set of positive integers (which has a least element), and that of negative integers (which has a greatest element). The open interval (0, 1) of rationals is order isomorphic to the rationals (since, for example, is a strictly increasing bijection from the former to the latter); the rationals contained in the half-closed intervals [0,1) and (0,1], and the closed interval [0,1], are three additional order type examples. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3321 as of Jun 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)