About: Propositional calculus     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

AttributesValues
rdf:type
rdfs:label
  • Propositional calculus
  • حساب القضايا
  • Lògica proposicional
  • Výroková logika
  • Aussagenlogik
  • Προτασιακός λογισμός
  • Logika proposizional
  • Lógica proposicional
  • Kalkulus proposisional
  • Calcul des propositions
  • 命題論理
  • Logica proposizionale
  • 명제 논리
  • Rachunek zdań
  • Propositielogica
  • Lógica proposicional
  • Satslogik
  • Логика высказываний
  • Числення висловлень
  • 命题逻辑
rdfs:comment
  • في الرياضيات والمنطق، حساب القضايا (بالإنجليزية: propositional calculus)‏ هو نظام يتم فيه تمثيل القضايا بربط قضايا ذرية بواسطة روابط منطقية، إضافة إلى نظام للاستدلال والبرهان تتم بواسطته برهنة نظريات منطقية.
  • La lògica proposicional és una branca de la lògica clàssica que estudia les proposicions o sentències lògiques, les seves possibles avaluacions de veritat i, en el cas ideal, el seu nivell absolut de veritat.
  • V matematice a logice se pojmem výroková logika označuje formální odvozovací systém, ve kterém atomické formule tvoří výrokové proměnné (na rozdíl od predikátové logiky). Výroková logika se skládá ze * - určují, kdy je formule správně utvořená, * odvozovacích pravidel - určují, jak z jedněch formulí správně odvozovat další stále validní důsledkové formule, * (nejvýše spočetné) množiny axiomů a axiomatických schémat.
  • Die Aussagenlogik ist ein Teilgebiet der Logik, das sich mit Aussagen und deren Verknüpfung durch Junktoren befasst, ausgehend von strukturlosen Elementaraussagen (Atomen), denen ein Wahrheitswert zugeordnet wird. In der klassischen Aussagenlogik wird jeder Aussage genau einer der zwei Wahrheitswerte „wahr“ und „falsch“ zugeordnet. Der Wahrheitswert einer zusammengesetzten Aussage lässt sich ohne zusätzliche Informationen aus den Wahrheitswerten ihrer Teilaussagen bestimmen.
  • Le calcul des propositions ou calcul propositionnel fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts . Il est considéré comme la forme moderne de la logique stoïcienne.
  • Kalkulus proposisional adalah sistem formal untuk menyatakan dan membuktikannya dengan cara menggabungkan dan operator logika. Beberapa contoh operator logika adalah: * (negasi) * (konjungsi) * (disjungsi) * (implikasi) * (ekuivalensi)
  • 命題論理(めいだいろんり、()英: propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。
  • Rachunek zdań – dział logiki matematycznej badający związki między zmiennymi zdaniowymi (zdaniami) lub funkcjami zdaniowymi, utworzonymi za pomocą funktorów zdaniotwórczych (spójników zdaniowych) ze zdań lub prostszych funkcji zdaniowych. Rachunek zdań określa sposoby stosowania funktorów zdaniotwórczych w poprawnym wnioskowaniu.
  • De propositielogica is een tak van logica die zich bezighoudt met het redeneren met proposities. Proposities zijn uitspraken of beweringen die ofwel waar, ofwel onwaar zijn. Voorbeelden hiervan zijn De Winkler Prins is een encyclopedie en Wicky heeft een noormannenhelm op. In de propositielogica kunnen uitspraken alleen waar of onwaar zijn, dit in tegenstelling tot meerwaardige logica's waarbij uitspraken ook andere waarden kunnen hebben. In vergelijking met andere types van logica is de propositielogica eenvoudig van opbouw (structuur, grammatica) maar beperkt in uitdrukkingsmogelijkheid.
  • Чи́слення висло́влень (логіка висловлень, пропозиційна логіка, англ. propositional calculus) — формальна система в математичній логіці, в якій формули, що відповідають висловленням, можуть утворюватись шляхом з'єднання простих висловлень із допомогою логічних операцій, та система правил виводу, які дозволяють визначати певні формули як «теореми» формальної системи.
  • 在邏輯和數學裡,命題演算(或稱句子演算)是一個形式系統,有著可以由以邏輯運算符結合原子命題來構成代表「命題」的公式,以及允許某些公式建構成「定理」的一套形式「證明規則」。
  • Προτασιακός λογισμός (ή αλλιώς προτασιακή λογική) είναι ο κλάδος της μαθηματικής λογικής ο οποίος μελετά τις λογικές προτάσεις (αν είναι αληθείς ή ψευδείς) που σχηματίζονται από άλλες προτάσεις με τη χρήση των , και το πώς η αληθοτιμή των πρώτων εξαρτάται από εκείνη των τελευταίων. Οι λογικοί σύνδεσμοι βρίσκονται επίσης και στις φυσικές γλώσσες. Στην ελληνική γλώσσα, για παράδειγμα, έχουμε τους λογικούς συνδέσμους «και» , «ή» (διάζευξη), «όχι» και «αν» (αλλά μόνο όταν χρησιμοποιείται με την έννοια της λογικής συνεπαγωγής). Προκείμενη 1: Αν βρέχει, τότε έχει συννεφιά Προκείμενη 2: Βρέχει.
  • La lógica proposicional, también llamada lógica de enunciados, lógica de orden cero o cálculo proposicional, es un sistema formal cuyos elementos más simples representan proposiciones o enunciados, y cuyas constantes lógicas, llamadas conectivas lógicas, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.​
  • Logika proposizionala, proposizioak eta horiek lotzen dituzten lokailuak osagaitzat hartzen dituen bat da. Logika proposizionalean "hizkuntza" edo proposizio konplexuak, proposizioak beraien artean lokailuen bitartez lotuz osatzen da. Premisa izeneko proposizio multzo batetik logikaz erator daitekeen ondoriozko proposiziora heltzea du helburu logika proposizionalak. Logika-sistema guztiak bezalaxe, logika proposizionalak ez du aztertzen proposizio bat errealitatean egiazkoa edo faltsua den, beste proposizioetatik deduzitzeko baliatu den prozesu logikoa edo argumentua zuzena den baizik. Logika proposizionala XIX. mendearen amaieran asmatu zuen Charles Sanders Peirce filosofoak eta XX. mendearen hasieran Ludwig Wittgenstein filosofoak osatu zuen, liburuan.
  • Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
  • La logica proposizionale (o enunciativa) è un linguaggio formale con una semplice struttura sintattica, basata fondamentalmente su proposizioni elementari (atomi) e su connettivi logici di tipo vero-funzionale, che restituiscono il valore di verità di una proposizione in base al valore di verità delle proposizioni connesse (solitamente noti come AND, OR, NOT...). La semantica della logica proposizionale definisce il significato dei simboli e di qualsiasi proposizione che rispetti le regole sintattiche del linguaggio, basandosi sui valori di verità associati agli atomi. Data una interpretazione (o modello) di una proposizione (in generale di un insieme di proposizioni), e cioè una associazione tra le proposizioni elementari e le realtà rappresentate, possiamo generare un insieme infinito di
  • Em lógica e matemática, uma lógica proposicional (ou cálculo sentencial) é um sistema formal no qual as fórmulas representam proposições que podem ser formadas pela combinação de proposições atômicas usando conectivos lógicos e um sistema de regras de derivação, que permite que certas fórmulas sejam estabelecidas como teoremas do sistema formal. A linguagem de um cálculo proposicional consiste em: Uma fórmula bem formada (fbf) é qualquer fórmula atômica ou qualquer fórmula que pode ser construída a partir de fórmulas atômicas, usando conectivos de acordo com as regras da gramática.
  • Логика высказываний, пропозициональная логика (лат. propositio — «высказывание») или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
  • Satslogiken är ett formellt logiskt system med väldefinierad syntax, avsett att symboliskt hantera språkliga satser, vilka uttrycker påståenden, och från dessa med giltiga slutledningar, dra slutsatser. I vardagsspråket används en mängd olika ord för att sammanbinda ("connect") satser. Dessa ord kallas konnektiv. I satslogiken är konnektiven väldefinierade och de fem, som företrädesvis används är: icke, och, eller, om... så... och om och endast om. Symbolerna för dessa uttryck är respektive → och ↔. Satslogiken har formaliserats till algebraisk kalkyl i den Booleska algebran.
differentFrom
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git81 as of Jul 16 2021


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3322 as of Sep 15 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software