An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the least-upper-bound property (sometimes the completeness or supremum property or l.u.b) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum.

AttributesValues
rdfs:label
• Least-upper-bound property
rdfs:comment
• In mathematics, the least-upper-bound property (sometimes the completeness or supremum property or l.u.b) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum.
foaf:depiction
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
• In mathematics, the least-upper-bound property (sometimes the completeness or supremum property or l.u.b) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine–Borel theorem. It is usually taken as an axiom in synthetic constructions of the real numbers (see least upper bound axiom), and it is also intimately related to the construction of the real numbers using Dedekind cuts. In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)