About: Calculus     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCalculus

Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Today, calculus has widespread uses in science, engineering, and economics.

AttributesValues
rdf:type
rdfs:label
  • Calculus
  • Càlcul infinitesimal
  • Infinitezimální počet
  • Infinitesimalrechnung
  • Λογισμός
  • Infinitezima kalkulo
  • Cálculo infinitesimal
  • Kalkulu infinitesimal
  • Calcul infinitésimal
  • Calcalas
  • Kalkulus
  • Calcolo infinitesimale
  • 微分積分学
  • 미적분학
  • Rachunek różniczkowy i całkowy
  • Wiskundige analyse
  • Cálculo
  • Математический анализ
  • Infinitesimalkalkyl
  • Диференціальне та інтегральне числення
  • 微积分学
rdfs:comment
  • El càlcul infinitesimal és una branca de les matemàtiques, desenvolupada a partir de l'àlgebra i la geometria, que involucra dos conceptes complementaris: el concepte d'"integral" (càlcul integral) i el concepte de derivada (càlcul diferencial). Les dues operacions són inverses i estan lligades pel teorema fonamental del càlcul. Els fundadors d'aquesta branca són Isaac Newton i Gottfried Leibniz i els seus precursors John Wallis i Isaac Barrow. Posteriorment, va ser Augustin Louis Cauchy qui va donar-li una forma més rigorosa en afegir-hi el concepte de límit. Aquesta branca de les matemàtiques ha esdevingut la base fonamental de la física des de la qual es vertebra. El càlcul té també aplicacions en química, enginyeria, economia i medicina.
  • Infinitezimální počet neboli kalkul(us) je obor matematiky, blízký matematické analýze, jehož hlavními částmi jsou diferenciální a integrální počet s důležitými pojmy derivace a integrálu, které propojuje tzv. základní věta integrálního počtu. Označení historicky vychází z pojmu infinitezimální hodnoty.
  • Kalkulu infinitesimala analisi matematikoaren adarra da, funtzio jarraituen aldakuntza arrazoiak edo tasak aztertzen dituena. Bi alor nagusi ditu, kalkulu diferentziala eta kalkulu integrala, kalkuluaren oinarrizko teoremak lotzen dituena. Isaac Newton eta Gottfried Wilhelm Leibniz hartzen dira kalkulu infinitesimalaren sortzailetzat.
  • Séard atá sa chalcalas ná bealach matamaiticiúil chun cur síos a dhéanamh ar rátaí athraithe. Baintear úsáid as an gcalcalas ins an bhfisic, ins an meicnic ach go háirithe, i staidéar na heacnamaíochta, agus i neart brainsí eile den eolaíocht. Tugtar sainmhíniú ar fheidhm sa chalcalas agus leagtar amach bealach chun ráta athraithe na feidhme sin a ríomh. Glaotar an calcalas difreálach air seo. Ar an láimh eile, má tá ráta athraithe ar eolas, tá bealach ann chun an fheidhm a ríomh, agus is é seo an calcalas suimealach. Tá teoirim ann a deireann gur inbheartú é an calcalas suimeálach agus difreálach, agus is é seo bunteoirim an chalcalais.
  • Il calcolo infinitesimale è la branca fondante dell'analisi matematica che studia il "comportamento locale" di una funzione tramite le nozioni di continuità e limite, usato in quasi tutti i campi della matematica e della fisica, e della scienza in generale. Le funzioni a cui si applica sono a variabile reale o complessa. Tramite la nozione di limite, il calcolo infinitesimale definisce e studia le nozioni di convergenza di una successione o di una serie, continuità, derivata e integrale.
  • 微分積分学(びぶんせきぶんがく, calculus)とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いはを考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。
  • Rachunek różniczkowy i całkowy – dział matematyki zajmujący się badaniem funkcji zmiennej rzeczywistej lub zespolonej w oparciu o podstawowe dla tej dyscypliny matematycznej pojęcia pochodnych i całek. Rachunek różniczkowy jest jednym z podstawowych narzędzi matematycznych fizyki i techniki.
  • Infinitesimalkalkyl, från nylatinets infinitesimus, från infinit, med betydelsen oändlig, är den del av matematiken som behandlar gränsvärden, derivator och integraler. Namnet infinitesimalkalkyl syftar på de obegränsat (infinit) små tal som används. Termen inbegriper differentialkalkyl och integralkalkyl. Enkelt uttryckt kan man säga att en infinitesimalkalkyl inbegriper beräknandet av oändligt små tal samt oändligt stora tal. Man undersöker matematiska förhållandens förändringar när en variabel närmar sig en gräns. Kalkylen är en del av en analys som i där huvudsakligen funktioner undersöks. Funktionerna uttrycks med hjälp av differential- och integralkalkyler betraktade i infinitesimala sektioner.
  • 微積分學(Calculus,在拉丁语中意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的學問,正如:幾何學是研究形狀的學問、代數學是研究代數運算和解方程的學問一樣。微積分學又稱為“初等數學分析”。 微積分學在商學、科學和工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和幾何學的基礎上建立起来,主要包括微分學、積分學。微分學,微分是對函數的局部變化率的一種線性描述,包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演繹。積分學,積分是微積分學與數學分析裡的一個核心概念,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分基本定理指出,微分和不定積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是高等數學的主要分支之一。
  • Die Infinitesimalrechnung ist eine von Gottfried Wilhelm Leibniz und Isaac Newton unabhängig voneinander entwickelte Technik, um Differential- und Integralrechnung zu betreiben. Sie liefert eine Methode, eine Funktion auf beliebig kleinen (d. h. infinitesimalen) Abschnitten widerspruchsfrei zu beschreiben. Frühe Versuche, unendlich kleine Intervalle quantitativ zu fassen, waren an Widersprüchen und Teilungsparadoxa gescheitert.
  • Λογισμός είναι η μαθηματική μελέτη της συνεχούς μεταβολής των τιμών. Έχει δύο κύριους κλάδους τον διαφορικό λογισμό (σχετικά με τα ποσοστά των αλλαγών και τις κλίσεις των καμπυλών) και τον (σχετικά με τη σώρευση των ποσοτήτων και τις περιοχές κάτω από τις καμπύλες), αυτοί οι δύο κλάδοι συνδέονται μεταξύ τους με το θεμελιώδες θεώρημα του λογισμού. Και οι δύο κλάδοι κάνουν χρήση των θεμελιωδών εννοιών της άπειρων ακολουθιών και άπειρων σειρών σε ένα καλά καθορισμένο όριο. Ο λογισμός έχει ευρέως διαδεδομένες χρήσεις στον τομέα της επιστήμης, της οικονομίας, και της μηχανικής και μπορεί να λύσει πολλά προβλήματα που η άλγεβρα μόνη της δεν μπορεί.
  • Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Today, calculus has widespread uses in science, engineering, and economics.
  • Infinitezima kalkulo aŭ senfinecona kalkulo estas branĉo de matematiko kiu entenas la diferencialan kalkulon kaj la integralan kalkulon, kiuj estas kunigitaj per la fundamenta teoremo de infinitezima kalkulo. La infinitezima kalkulo estas rigorigita en la analitiko. La infiniteziman kalkulon malkovris en la 17-a jarcento Newton kaj Leibniz, kiuj uzis infinitezimajn kvantojn por determini tangentojn de kurboj aŭ por faciligi kalkulon de longoj kaj areoj de la kurbaj figuroj.
  • El cálculo infinitesimal o simplemente cálculo constituye una parte muy importante de la matemática moderna. En la misma manera que la geometría estudia el espacio y el álgebra estudia las estructuras abstractas, el cálculo es el estudio del cambio y la continuidad (más concretamente, de los cambios continuos, en oposición a los discretos). En los programas de estudio para matemáticos el cálculo es usualmente abordado como parte del análisis, que está definido como el estudio de las funciones.
  • Kalkulus (bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu yang mempelajari perubahan, sebagaimana geometri yang mempelajari bentuk dan aljabar yang mempelajari operasi dan penerapannya untuk memecahkan persamaan. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
  • Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : * Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés. * Le calcul intégral, qui développe l'idée d'intégration, les techniques d'intégration, fait intervenir le concept d'aire sous-tendue par le graphe d'une fonction, inclut des notions connexes comme le volume, les suites et séries.
  • 미적분학(微積分學, calculus)은 수학의 한 분야로 극한, 함수, 미분, 적분, 무한급수를 다루는 학문이다. 다른 명칭은 "무한소 해석학"이다. 미적분학은 속도, 가속도 같은 일정하게 변하는 양들의 값을 구한다. 그 값들은 곡선의 기울기로 해석한다. 또 넓이, 부피, 길이 등은 곡선으로 제한된다. 여기서 "곡선"은 직선을 의미할 수도 있으므로 주의해야 한다. 또 극한을 구하는 과정을 유도하는 무한 과정 또는 궁극점(일반적으로 구하는 값)에 접근해 가는 것과 관련이 있다. 이 2가지 방법은 수학적 해석학의 토대가 되고 있다. 기하학이 모양(Shape)에 중심을 둔 학문이고 대수학이 연산과 그 활용에 대한 학문이라면, 미적분학은 변화에 중점을 둔 학문이다. 미적분학은 크게 2개의 분야로 분류되는데, 미분과 적분이 바로 그것이다. 미분은 국소적인 변화를 다루는 분야이고, 적분은 국소적인 양의 집적을 다루는 분야이다. 미분과 적분은 완전히 별개의 개념이지만, 밀접한 연관성을 갖는다. 변수가 하나인 경우, 하나가 나머지의 역연산이 된다. 이를 미적분학의 기본정리라고 부른다.
  • O cálculo diferencial e integral, ou simplesmente cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento em que forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada. Foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido simultaneamente por Gottfried Wilhelm Leibniz (1646-1716) e por Isaac Newton (1643-1727), em trabalhos independentes.
  • Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
  • Диференціальне та інтегральне числення (англ. Calculus, від лат. calculus, дослівно «невеликий камінчик» — такий що у рахівницях, що використовувався для підрахунку) — є гілкою математики, що вивчає збіжності послідовностей і рядів, неперервні дійсні функції і диференціальне та інтегральне числення дійсних функцій одної змінної. У іноземній освітній традиції курс «числення» є вступом до курсу математичного аналізу та інших курсів які використовують диференціальне та інтегральне числення.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software