About: Irrational number     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIrrational_number

In mathematics, the irrational numbers are all the real numbers which are not rational numbers, the latter being the numbers constructed from ratios (or fractions) of integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.

AttributesValues
rdfs:label
  • عدد غير نسبي
  • Nombre irracional
  • Iracionální číslo
  • Άρρητος αριθμός
  • Irrational number
  • Neracionala nombro
  • Número irracional
  • Zenbaki irrazional
  • Nombre irrationnel
  • Uimhir éagóimheasta
  • Bilangan irasional
  • 無理数
  • Numero irrazionale
  • 무리수
  • Irrationaal getal
  • Liczby niewymierne
  • Número irracional
  • Иррациональное число
  • Irrationella tal
  • Ірраціональні числа
  • 無理數
rdfs:comment
  • Un nombre irracional és un nombre real que no és racional, és a dir, que no es pot expressar com una fracció , a la qual a i b són enters, i b és diferent de 0. Els nombres irracionals són precisament aquells l'expansió decimal dels quals no s'atura mai, i tampoc no entra mai en un cicle periòdic. Ja que els nombres reals no són enumerables mentre que els racionals sí (diagonalització de Cantor), gairebé tot els nombres reals són irracionals. Alguns nombres irracionals són nombres algebraics, com l'arrel quadrada de 2 o l'arrel cúbica de 5; altres són transcendents, com i .
  • Zenbaki irrazionala zenbaki erreal bat da, zenbaki arrazionalen multzokoa ez dena, hots, bi zenbaki osoren arteko zatidura moduan ezin idatz daitekeena. Zenbaki irrazionalek hamartar kopuru infinitua dute, eta ez dute periodorik. Zenbaki irrazionalen multzoa − adierazten da.
  • Is uimhir éagóimheasta é aon réaduimhir nach uimhir chóimheasta. Sé sin chun rá, is uimhir éagóimheasta aon uimhir gur féidir scríobh mar , ach nach féidir scríobh san cruth nuair slánuimhir iad a agus b. Tá cáil ar , agus mar uimhir éagóimheasta.
  • 無理数(むりすう、 英: irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比 = 英: ratio)として表すことのできない実数を指す。実数は非可算個で有理数は可算個であるから、ほとんど全ての実数は無理数である。 無理数という語は、「何かが無理である数」という意味に誤解されやすいため、語義的に「無比数」と訳すべきだったという意見もある。
  • 무리수(無理數, irrational number)는 두 정수의 비의 형태로 나타낼 수 없는 실수를 말한다. 즉, 분수로 나타낼 수 없는 소수이다. 이에 반해 두 정수의 비에 의해 나타낼 수 있는 수를 유리수(분수)라 한다. 이것도 소수이다. 유리수의 집합은 로 정의하고,무리수의 집합은 로 정의한다. 무리수는 소수점 이하로 같은 수의 배열이 반복적으로 나타나지 않는(순환하지 않는) 무한소수이다. 무리수는 다시 와 같은 대수적 수와 등의 초월수로 나뉜다.
  • Liczby niewymierne – liczby rzeczywiste niebędące liczbami wymiernymi, czyli takie liczby rzeczywiste, których nie można przedstawić w postaci ilorazu liczby całkowitej i liczby całkowitej różnej od zera. Liczby niewymierne wypełniają luki w przekrojach Dedekinda zbioru liczb wymiernych dając w efekcie przestrzeń zupełną. Międzynarodowym symbolem zbioru jest Rozwinięcie dziesiętne liczby niewymiernej jest nieskończone i nieokresowe.
  • Número irracional é um número real que não pode ser obtido pela divisão de dois números inteiros, ou seja, são números reais mas não racionais. O conjunto dos números irracionais é representado pelo símbolo
  • 無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数(任何有限或无限循环小数可被表示称两个整数的比)。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。
  • في الرياضيات، الأعداد غير النسبية أو الأعداد غير القياسية أوالأعداد غير الجذرية أوالأعداد غير الكسرية أو العدد الأصم أو الجذر الأصم (بالإنجليزية: Irrational number) هي الأعداد الحقيقية التي لا يمكن كتابتها على صورة كسر اعتيادي (أي كسر بسطه ومقامه عددان صحيحان ومقامه يختلف عن الصفر). وبتعبير آخر، الأعداد غير النسبية لا يمكن أن تُمثل على شكل كسر بسيط. فالأعداد غير النسبية هي الأعداد الحقيقية التي ليس لها تمثيل عشري منته أو متكرر. ونتيجة على برهان كانتور على كون الأعداد الحقيقية غير قابلة للعد (وأن الأعداد النسبية قابلة للعد)، فإن الأعداد الحقيقية كلها تقريبا غير نسبية.
  • V matematice je iracionální číslo (řecky arretos či alogos) každé reálné číslo, které není racionálním číslem, tedy takové číslo, které nelze vyjádřit jako zlomek, tedy podíl dvou celých čísel a/b, kde a a b jsou celá čísla a b není nula. Iracionální číslo má neukončený a neperiodický desetinný rozvoj. Mezi nejznámější iracionální čísla patří číslo , vyjadřující délku kružnice s jednotkovým průměrem nebo Eulerovo číslo e, základ přirozených logaritmů. Tato čísla jsou dokonce transcendentní – nejsou kořeny žádné algebraické rovnice (rovnice, v níž jsou koeficienty přirozená čísla).
  • Άρρητος αριθμός ονομάζεται κάθε αριθμός ο οποίος δεν είναι δυνατό να εκφραστεί ως κλάσμα , όπου και είναι ακέραιοι αριθμοί, με διάφορο του μηδενός, σε αντίθεση με τους ρητούς αριθμούς, οι οποίοι μπορούν να εκφραστούν ως κλάσμα ακεραίων και επίσης, άρρητοι αριθμοί ονομάζονται οι αριθμοί οι οποίοι δεν έχουν κάποιο ακριβές ή συγκεκριμένο αποτέλεσμα. Παραδείγματα άρρητων αριθμών είναι το π ή το e και η τετραγωνική ρίζα του 2 ().
  • La bezono de la ekzakta esprimo de kelkaj grandoj (ekz. proporcio de kvadrata diagonalo al ĝia latero) postulis determinon de neracionalaj nombroj, kiuj esprimiĝas per racionalaj nombroj nur proksimume. Ĉiuj nombroj, kiuj ne estas racionalaj, estas konsiderataj kiel neracionalaj. La termino neracionala devenas de latina irrationalis - neracia, de ir(in) - negativa prefikso kaj ratio - proporcio. Ili povas esti skribitaj kiel decimaloj, sed ne kiel frakcioj, kaj havas senfinan nombron de ciferoj dekstre de la decimala punkto. Jen ekzemplo de neracionalaj nombroj:
  • In mathematics, the irrational numbers are all the real numbers which are not rational numbers, the latter being the numbers constructed from ratios (or fractions) of integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
  • En matemáticas, un número irracional es un número que no puede ser expresado como una fracción m⁄n, donde m y n sean enteros y n sea diferente de cero.​ Es cualquier número real que no es racional, y su expresión decimal no es ni exacta ni periódica.​
  • Dalam matematika, bilangan irasional adalah bilangan riil yang tidak bisa dibagi (hasil baginya tidak pernah berhenti). Dalam hal ini, bilangan irasional tidak bisa dinyatakan sebagai a/b, dengan a dan b sebagai bilangan bulat dan b tidak sama dengan nol. Jadi bilangan irasional bukann merupakan bilangan rasional. Contoh yang paling populer dari bilangan irasional adalah bilangan π, , dan bilangan e. Bilangan π sebetulnya tidak tepat, yaitu kurang lebih 3.14, tetapi = 3,1415926535.... atau= 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510... Untuk bilangan : dan untuk bilangan e:
  • Un nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini.
  • In matematica, un numero irrazionale è un numero reale che non è un numero razionale, cioè non può essere scritto come una frazione a / b con a e b interi e b diverso da 0. I numeri irrazionali sono esattamente quei numeri la cui espansione in qualunque base (decimale, binaria, ecc.) non termina mai e non forma una sequenza periodica. L'introduzione di questi numeri nel panorama matematico è iniziata con la scoperta da parte dei greci delle grandezze incommensurabili, ossia prive di un sottomultiplo comune.
  • Een irrationaal getal is een reëel getal dat niet te schrijven is als het quotiënt (breuk) van twee gehele getallen. Is een getal wel te schrijven als een quotiënt van twee gehele getallen, dan spreken we over een rationaal getal. Rationale en irrationale getallen samen vormen de verzameling van de reële getallen. Een bekend voorbeeld van een irrationaal getal is de vierkantswortel uit 2. Het is niet altijd eenvoudig om vast te stellen (en te bewijzen) of een reëel getal rationaal of irrationaal is. Van de constante van Euler is niet bekend of dit getal rationaal is of niet.
  • Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби , где — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби. Другими словами, множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.
  • Inom matematiken är irrationella tal reella tal som inte är rationella tal, det vill säga tal som inte kan skrivas som a/b, där a och b är heltal samt b skilt från noll. Det går att beskriva som mängden av alla reella tal som inte tillhör de rationella talen Det kan visas att de irrationella talen är de tal som på decimalform har en oändlig följd av decimaler som inte består av ett oändligt antal periodiska upprepningar. Ett irrationellt tal är antingen ett algebraiskt tal eller ett transcendent tal.
  • Ірраціональні числа (позначення для множини — ) — це всі дійсні числа, що не є раціональними: , — тобто не можуть бути записані як відношення цілих чисел (, ), а лише нескінченними неперіодичними десятковими дробами.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software