About: Inequality of arithmetic and geometric means     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInequality_of_arithmetic_and_geometric_means

In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same. The simplest non-trivial case — i.e., with more than one variable — for two non-negative numbers x and y, is the statement that Extensions of the AM–GM inequality are available to include or generalized means.

AttributesValues
rdfs:label
  • Desigualtat entre les mitjanes aritmètica i geomètrica
  • Nerovnost aritmetického a geometrického průměru
  • Ungleichung vom arithmetischen und geometrischen Mittel
  • Inequality of arithmetic and geometric means
  • Desigualdad de las medias aritmética y geométrica
  • Batezbestekoen arteko erlazio
  • Inégalité arithmético-géométrique
  • Disuguaglianza tra media aritmetica e media geometrica
  • 산술-기하 평균 부등식
  • Nierówności między średnimi
  • Desigualdade das médias
  • Неравенство между средним арифметическим и средним геометрическим
  • Нерівність середнього арифметичного та геометричного
  • 算术-几何平均值不等式
rdfs:comment
  • En matemàtiques, es coneix com a desigualtat entre les mitjanes aritmètica i geomètrica aquella desigualtat que estableix que la mitjana aritmètica d'un conjunt de nombres reals positius és major o igual que la mitjana geomètrica del mateix conjunt.
  • V matematice říká nerovnost aritmetického a geometrického průměru (krátce AG nerovnost), že aritmetický průměr nezáporných čísel je vždy větší nebo roven geometrickému průměru těchto čísel. Navíc, rovnost nastává tehdy a jen tehdy, pokud jsou všechna průměrovaná čísla stejná.
  • En matemáticas, se conoce como desigualdad entre media aritmética y geométrica, o MA-MG, aquella desigualdad que establece que la media aritmética de un conjunto de números reales positivos es mayor o igual que la media geométrica del mismo conjunto, cumpliéndose únicamente la igualdad cuando todos los elementos del conjunto sean iguales.
  • In der Mathematik besagt die Ungleichung vom arithmetischen und geometrischen Mittel, dass das arithmetische Mittel mindestens so groß wie das geometrische Mittel ist. Für war diese Ungleichung bereits Euklid bekannt; der erste Beweis für einen beliebigen Wert von wurde 1729 von Colin Maclaurin veröffentlicht.
  • Analitikoki froga daiteke batezbesteko harmonikoaren (), batezbesteko geometrikoaren () eta batezbesteko aritmetiko sinplearen () artean erlazio hau betetzen dela: Berdintza kalkulurako erabiltzen diren datu guztiak berdinak direnean gertatzen da.
  • En mathématiques, l'inégalité arithmético-géométrique établit un lien entre la moyenne arithmétique et la moyenne géométrique. C'est un résultat classique lié à la convexité.
  • 수학에서, 산술-기하 평균 부등식(算術幾何平均不等式, 영어: arithmetic-geometric mean inequality)은 산술 평균과 기하 평균 사이에 성립하는 부등식이다. 이에 따르면, 임의의 음수가 아닌 실수들에 대하여, 그 산술 평균은 그 기하 평균보다 크거나 같으며, 정확히 모든 실수들이 같은 경우에만 두 평균이 같다.
  • A desigualdade das médias afirma que a média aritmética é maior ou igual à média geométrica e esta maior ou igual à média harmônica. Mais precisamente falando, seja um conjunto não vazio de números reais positivos então: onde , veja somatório. e , veja produtório.
  • Неравенство Коши (неравенство о средних) гласит, что для любых неотрицательных чисел верно неравенство: причем равенство достигается тогда и только тогда, когда .
  • 算术-几何平均值不等式,簡稱算几不等式,是一个常见而基本的不等式,表现算术平均数和几何平均数之间恒定的不等关系。设为 个正实数,它们的算术平均数是,它们的几何平均数是 。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当 。 算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。 算术-几何平均值不等式有時被称为平均值不等式(或均值不等式),其實后者是一组更廣泛的不等式。
  • In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same. The simplest non-trivial case — i.e., with more than one variable — for two non-negative numbers x and y, is the statement that Extensions of the AM–GM inequality are available to include or generalized means.
  • In matematica, la disuguaglianza tra media aritmetica e media geometrica, o più brevemente la disuguaglianza MA-MG, afferma che la media aritmetica di una lista di numeri reali è maggiore della media geometrica della stessa lista; e inoltre, che le due medie sono uguali se e solo se ogni numero nella lista è lo stesso. Il caso non banale più semplice, per due numeri reali non negativi e , è la disuguaglianza: Quindi , con l'uguaglianza precisamente quando , cioè . La disuguaglianza MA-MG segue poi applicando la radice quadrata ad ambo i membri.
  • Nierówności między średnimi, nierówności Cauchy’ego między średnimi – nierówności porządkujące w ciąg nierosnący cztery średnie tj. średnią kwadratową, arytmetyczną, geometryczną i harmoniczną wyznaczone dla tego samego układu liczb dodatnich Ich nazwa pochodzi od nazwiska Augustina Louisa Cauchy’ego, francuskiego matematyka. Oznacza to, że Ponadto równości w powyższym wyrażeniu zachodzą wtedy i tylko wtedy, gdy liczby są równe. Nierówność między średnimi jest szczególnym przypadkiem nierówności między średnimi uogólnionymi. Można też rozważać ważoną wersję tej nierówności: dla i
  • У математиці, нерівність середнього арифметичного та геометричного або коротше нерівність СА–СГ стверджує, що середнє арифметичне набору невід'ємних дійсних чисел більше ніж або дорівнює середньому геометричному цих же чисел; і далі, що ці середні дорівнюють одне одному тоді і лише тоді, коли усі числа в наборі однакові. Найпростіший нетривіальний випадок — тобто, з більш ніж з однією змінною — для двох невід'ємних чисел x і y, це таке твердження Інакше кажучи, (x + y)2 ≥ 4xy, де рівність досягається саме тоді, коли (x − y)2 = 0, тобто x = y.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software