About: Exponential function     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FExponential_function

In mathematics, an exponential function is a function of the form where b is a positive real number, and in which the argument x occurs as an exponent. For real numbers c and d, a function of the form is also an exponential function, as it can be rewritten as As functions of a real variable, exponential functions are uniquely characterized by the fact that the growth rate of such a function (that is, its derivative) is directly proportional to the value of the function. The constant of proportionality of this relationship is the natural logarithm of the base b: or for all

AttributesValues
rdf:type
rdfs:label
  • دالة أسية
  • Funció exponencial
  • Exponenciální funkce
  • Exponentialfunktion
  • Exponential function
  • Función exponencial
  • Funtzio esponentzial
  • Exponentielle de base a
  • Feidhm easpónantúil
  • 底に関する指数函数
  • 지수 함수
  • Função exponencial
  • Funkcja wykładnicza
  • Показательная функция
  • Exponentialfunktion
  • Показникова функція
  • 指数函数
rdfs:comment
  • الدالة الأسية (بالإنجليزية: Exponential function) هي كل دالة تُكتب على الشكل حيث و عدد حقيقي موجب لا يساوي 1، إذا كان فإن الدالة تكون تناقصية وتسمى دالة تضاؤل أسي، أما إذا كان فإن الدالة تكون تزايدية وتسمى دالة نمو أسي.
  • Sa mhatamaitic, is é is feidhm easpónantúil ann ná feidhm ina bhfuil an athróg ina heaspónant, mar shampla, . Feidhm easpónantúil thábhachtach is ea a bhfuil mar airí aici, . Mar sin, tá ráta fáis i gcomhréir bheacht lena mhéid. De réir mar a fhásann , is amhlaidh is mó a ráta fáis, agus tugtar fás easpónantúil nó scaoilte ar a leithéid. Ina fhoirm ghinearálta, , samhlaíonn an slonn seo próisis fhisiciúla cosúil le dlíthe an fháis (k dearfach) is an mheata (k diúltach), díluchtú toilleora agus meath radaighníomhach. Is í seo an tsraith easpónantúil: Is féidir na feidhmeanna triantánacha a shainmhíníu i dtéarmaí easpónant mar seo: , agus . Chruthaigh Euler an toradh suntasach .
  • 実解析における底 a の指数函数(しすうかんすう、英: exponential of base a)expa は、実数 x を実数 ax へ写す函数である。これが実函数として意味を持つのは a が真に正の実数であるときに限る。これは自然数全体で定義された n を an へ写す函数の、実数全体を定義域とする拡張である。しかがってこれを、幾何数列の連続版と見ることができる。自然指数函数と自然対数函数を用いれば、 と書くことができる。a を底とする指数函数を、1 において値 a をとり、和を積に変換する、ℝ 上で定義された唯一の連続函数として定義することもできる。a ≠ 1 に対し、底 a の対数函数の逆函数であり、その意味でこれらを(真数函数)と呼ぶこともある。a = e のとき、自然指数・自然対数に対応する。自然指数函数は、自身の導函数に比例し、0 において値 1 をとる唯一の ℝ 上の可微分函数である。 これらは母集団の大きさに比例する増大率を持つ物理的・生物学的現象のモデルとして用いることができる。 より一般に、適当なスカラー倍 N⋅ax も含めた意味で指数函数と呼ぶ場合もあるが、本項ではそのような意味では用いない。
  • 지수 함수(指數函數, 영어: exponential function)란 거듭제곱의 지수를 변수로 하고, 정의역을 실수 전체로 정의하는 초월함수이다. 로그 함수의 역함수이다.
  • Funkcja wykładnicza – funkcja postaci: gdzie Niektórzy autorzy wymagają, aby podstawa funkcji wykładniczej była różna od 1, ponieważ dla funkcja jest funkcją stałą.
  • Chama-se função exponencial a função tal que em que , . O número é chamado de base da função. A função exponencial pode ser crescente ou decrescente a depender do valor da base. Se , a função é crescente. Caso a função é decrescente.
  • 指数函数(英語:Exponential function)是形式為的數學函数,其中是底數(或稱基數,base),而是指數(index / exponent)。 現今指數函數通常特指以為底數的指數函數(即),為数学中重要的函数,也可寫作。这里的是数学常数,也就是自然对数函数的底数,近似值为,又称为欧拉数。 作为实数变量的函数,的图像总是正的(在轴之上)并递增(从左向右看),它不触及轴,尽管它可以任意程度的靠近它,即轴是这个图像的水平渐近线。一般的说,变量可以是任何实数或复数,甚至是完全不同种类的数学对象。它的反函数是定义在所有正数上的自然对数。 本文集中于带有底数为欧拉数的指数函数。有时,特别是在科学中,术语指数函数更一般性的用于形如的函数,这里的称为底数,是不等于的任何正实数。
  • Показнико́ва, або експоненці́йна фу́нкція (англ. exponential function) — функція виду , де — стале число (додатне, але відмінне від одиниці). У дійсному випадку основа степеня — деяке додатне дійсне число, а аргументом функції є дійсний показник степеня. Показникова функція узагальнюється в теорії комплексних функцій, де аргумент і показник степеня можуть бути довільними комплексними числами. У найзагальнішому вигляді — , введена Лейбніцем 1695 року. Особливо виділяється випадок, коли як основа степеня виступає число e. Така функція називається експоне́нтою (дійсною або комплексною).
  • En sentit ampli, una funció exponencial és qualsevol funció del tipus ax, una potenciació on la base a és qualsevol nombre real positiu i l'exponent x és la variable. De manera encara més general, s'anomenen així les funcions múltiples d'aquestes, de la forma kax amb k real (vegeu Creixement exponencial). En llenguatge menys precís, fins i tot es pot anomenar exponencial qualsevol funció formada a partir d'algun dels termes anteriors o que s'hi aproximi. Malgrat tot, el terme funció exponencial gairebé sempre es refereix a la funció exponencial en base e, que és la que tracta aquest article.
  • Exponenciální funkce čili exponenciála je matematická funkce ve tvaru , kde je kladné číslo různé od , které se nazývá základ. Číslu se říká exponent. Definičním oborem exponenciální funkce jsou všechna reálná, resp. všechna komplexní čísla (a lze ji rozšířit i na složitější objekty, zejména lineární operátory). Inverzní funkcí k exponenciále je logaritmus o stejném základu: Derivací exponenciály je tato exponenciála vynásobená přirozeným logaritmem základu:
  • In der Mathematik bezeichnet man als Exponentialfunktion eine Funktion der Form mit einer reellen Zahl als Basis (Grundzahl). In der gebräuchlichsten Form sind dabei für den Exponenten die reellen Zahlen zugelassen. Im Gegensatz zu den Potenzfunktionen, bei denen die Basis die unabhängige Größe (Variable) und der Exponent fest vorgegeben ist, ist bei Exponentialfunktionen der Exponent (auch Hochzahl) des Potenzausdrucks die Variable und die Basis fest vorgegeben. Darauf bezieht sich auch die Namensgebung. Exponentialfunktionen haben in den Naturwissenschaften, z. B. bei der mathematischen Beschreibung von Wachstumsvorgängen, eine herausragende Bedeutung (siehe exponentielles Wachstum).
  • In mathematics, an exponential function is a function of the form where b is a positive real number, and in which the argument x occurs as an exponent. For real numbers c and d, a function of the form is also an exponential function, as it can be rewritten as As functions of a real variable, exponential functions are uniquely characterized by the fact that the growth rate of such a function (that is, its derivative) is directly proportional to the value of the function. The constant of proportionality of this relationship is the natural logarithm of the base b: or for all
  • Matematikan, funtzio esponentziala funtzio bat da, adierazpen hau duena: Funtzio esponentzialaren ezaugarri nagusia aldagai dependenteak erakusten duen hazkunde esponentziala da, a>1 betetzen bada, non hazkunde-tasa (edo deribatua) konstantea den. Adibidez, y=f(x)=1000×1.3x funtzio esponentzialean, x unitate bat gehitzean, y=f(x) aldagai dependentea %30 gehitzen da beti. Beraz, funtzioa esponentzialak erakusten duen hazkundea proportzionala da yrekiko eta gero eta handiagoa modu absolutuan hartzen bada.
  • En matemáticas, una función exponencial es una función de la formaen el que el argumento x se presenta como un exponente. Una función de la forma también es una función exponencial, ya que puede reescribirse como El argumento de la función exponencial puede ser cualquier número real o complejo o incluso un tipo de objeto matemático completamente diferente (por ejemplo, una matriz).
  • En analyse réelle, l'exponentielle de base a est la fonction notée expa qui, à tout réel x, associe le réel ax. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe an. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur ℝ, prenant la valeur a en 1 et transformant une somme en produit.
  • Показательная функция — математическая функция , где называется основанием степени, а — показателем степени. * В вещественном случае основание степени — некоторое неотрицательное вещественное (действительное) число, а аргументом функции является вещественный показатель степени. * В теории комплексных функций рассматривается более общий случай, когда аргументом и показателем степени может быть произвольное комплексное число. * В самом общем виде — , введена Лейбницем в 1695 г.
  • Exponentialfunktioner är en klass av matematiska funktioner som kännetecknas av att funktionsvärdets ändringstakt är proportionell mot funktionsvärdet. Exempelvis kan ränta på ränta beräknas som där rx är en exponentialfunktion, den årliga räntefaktorn är r (till exempel 1,10 för 10 % ränta) och x antalet år. Exponentialfunktionerna kan skrivas på flera former, exempelvis * * * Då det talas om exponentialfunktionen (i bestämd form), avses funktionen f(x) = ex (skrivs även som exp(x) i de flesta programspråk). Talet e är den naturliga logaritmens bas och har egenskapen att
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software