About: Particle physics and representation theory     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Road, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/c/2F7dRMcpCM

There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.

AttributesValues
rdf:type
rdfs:label
  • 입자물리학과 표현론의 관계 (ko)
  • Particle physics and representation theory (en)
  • Физика элементарных частиц и теория представлений (ru)
rdfs:comment
  • There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe. (en)
  • Физика элементарных частиц и теория представлений — физика элементарных частиц при построении своих математических моделей в качестве важной составной части математического аппарата использует теорию представлений. Она связывает математическое описание свойств элементарных частиц со структурой групп Ли и алгебр Ли. (ru)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Standard_Model_charges.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe. (en)
  • Физика элементарных частиц и теория представлений — физика элементарных частиц при построении своих математических моделей в качестве важной составной части математического аппарата использует теорию представлений. Она связывает математическое описание свойств элементарных частиц со структурой групп Ли и алгебр Ли. В соответствии с этой связью различные квантовые состояния элементарной частицы приводят к неприводимому представлению группы Пуанкаре. Более того, свойства различных частиц, включая их спектры, могут быть связаны с представлениями алгебр Ли, соответствующим «приближенным симметриям» физического мира.Впервые важность теории представлений в физике элементарных частиц отметил в 1930-х годах Юджин Вигнер (ru)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software