About: Covering group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Group100031264, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCovering_group

In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the Spin groups, Pin groups, and metaplectic groups.

AttributesValues
rdf:type
rdfs:label
  • Covering group
  • Grupo de recubrimiento
rdfs:comment
  • In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the Spin groups, Pin groups, and metaplectic groups.
  • En matemáticas, un grupo de recubrimiento de un grupo topológico H es un espacio recubridor G de H tal que G es un grupo topológico y la aplicación de recubrimiento p:G→H es un homomorfismo de grupos continuo.​ La aplicación p se dice que abarca el homomorfismo. Un caso frecuente es un grupo de recubrimiento doble, un doble recubrimiento topológico en el que H tiene índice 2 en G; entre sus ejemplos se incluyen los grupos espinoriales, los y el .
rdfs:seeAlso
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En matemáticas, un grupo de recubrimiento de un grupo topológico H es un espacio recubridor G de H tal que G es un grupo topológico y la aplicación de recubrimiento p:G→H es un homomorfismo de grupos continuo.​ La aplicación p se dice que abarca el homomorfismo. Un caso frecuente es un grupo de recubrimiento doble, un doble recubrimiento topológico en el que H tiene índice 2 en G; entre sus ejemplos se incluyen los grupos espinoriales, los y el . Para explicar el concepto en términos generales, se dice que, por ejemplo, el grupo metapléctico Mp2n es un doble recubrimiento del Sp2n, lo que significa que siempre hay dos elementos en el grupo metapléctico que representan un elemento en el grupo simpléctico.
  • In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the Spin groups, Pin groups, and metaplectic groups. Roughly explained, saying that for example the metaplectic group Mp2n is a double cover of the symplectic group Sp2n means that there are always two elements in the metaplectic group representing one element in the symplectic group.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software