An Entity of Type: military conflict, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

Property Value
dbo:abstract
  • في الرياضيات، ضرب المصفوفات (بالإنجليزية: Matrix multiplication)‏ هي عملية ثنائية تأخذ مصفوفتين اثنتين مدخلا لها وتعطي مصفوفة ثالثة. عناصر هذين المصفوفتين ينتمين إلى حقل، أو بصفة عامة إلى حلقة أو حتى إلى . (ar)
  • En matemàtiques, la multiplicació o producte de matrius és l'operació de multiplicació efectuada entre dues matrius, o bé entre una matriu i un escalar. Igual que la multiplicació aritmètica, la seva definició és instrumental, és a dir, ve donada per un algorisme capaç de resoldre-la, no obstant això, la multiplicació en aquest context es diferencia de la usual, principalment perquè no compleix amb la propietat de commutativitat. (ca)
  • Násobení matic nebo též maticové násobení je v matematice zobecnění násobení čísel na matice. Formálně se dá definovat jako binární operace nad množinou matic. Využívá se v matematice, fyzice a jejich aplikacích pro popis skládání lineárních zobrazení. Speciálním případem násobení matic je násobení vektoru maticí – jde vlastně o maticové násobení matice o rozměrech n × 1 (sloupcový vektor) zleva maticí o rozměrech m × n, které můžeme interpretovat jako aplikaci lineárního zobrazení reprezentovaného na vektor. (cs)
  • Die Matrizenmultiplikation oder Matrixmultiplikation ist in der Mathematik eine multiplikative Verknüpfung von Matrizen. Um zwei Matrizen miteinander multiplizieren zu können, muss die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmen. Das Ergebnis einer Matrizenmultiplikation wird dann Matrizenprodukt, Matrixprodukt oder Produktmatrix genannt. Das Matrizenprodukt ist wieder eine Matrix, deren Einträge durch komponentenweise Multiplikation und Summation der Einträge der entsprechenden Zeile der ersten Matrix mit der entsprechenden Spalte der zweiten Matrix ermittelt werden. Die Matrizenmultiplikation ist assoziativ und mit der Matrizenaddition distributiv. Sie ist jedoch nicht kommutativ, das heißt, die Reihenfolge der Matrizen darf bei der Produktbildung nicht vertauscht werden. Die Menge der quadratischen Matrizen mit Elementen aus einem Ring bildet zusammen mit der Matrizenaddition und der Matrizenmultiplikation den Ring der quadratischen Matrizen. Weiter bildet die Menge der regulären Matrizen über einem unitären Ring mit der Matrizenmultiplikation die allgemeine lineare Gruppe. Matrizen, die durch spezielle Multiplikationen mit regulären Matrizen ineinander überführt werden können, bilden darin Äquivalenzklassen. Der Standardalgorithmus zur Multiplikation zweier quadratischer Matrizen weist eine kubische Laufzeit auf. Zwar lässt sich der asymptotische Aufwand mit Hilfe spezieller Algorithmen verringern, die Ermittlung optimaler oberer und unterer Komplexitätsschranken für die Matrizenmultiplikation ist jedoch noch Gegenstand aktueller Forschung. Die Matrizenmultiplikation wird häufig in der linearen Algebra verwendet. So wird beispielsweise die Faktorisierung einer Matrix als Produkt von Matrizen mit speziellen Eigenschaften bei der numerischen Lösung linearer Gleichungssysteme oder Eigenwertprobleme eingesetzt. Weiterhin ist die Abbildungsmatrix der Hintereinanderausführung zweier linearer Abbildungen gerade das Matrizenprodukt der Abbildungsmatrizen dieser Abbildungen. Anwendungen der Matrizenmultiplikation finden sich unter anderem in der Informatik, der Physik und der Ökonomie. Die Matrizenmultiplikation wurde erstmals von dem französischen Mathematiker Jacques Philippe Marie Binet im Jahr 1812 beschrieben. (de)
  • Ĉi tiu artikolo donas priskribojn de la diversaj vojoj por multipliki matricojn. (eo)
  • En matemáticas, la multiplicación o producto de matrices es la operación de composición efectuada entre dos matrices, o bien la multiplicación entre una matriz y un escalar según unas determinadas reglas. Al igual que la multiplicación aritmética, su definición es instrumental, es decir, viene dada por un algoritmo capaz de efectuarla. El algoritmo para la multiplicación matricial es diferente del que resuelve la multiplicación de dos números. La diferencia principal es que la multiplicación de matrices no cumple con la propiedad de conmutatividad. (es)
  • Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». (fr)
  • In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering.Computing matrix products is a central operation in all computational applications of linear algebra. (en)
  • Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Matriks hasil perkalian keduanya, akan memiliki baris sebanyak baris matriks pertama, dan kolom sebanyak kolom matriks kedua. Perkalian matriks A dan B dinyatakan sebagai AB. Perkalian matriks didefinisikan pertama kali oleh matematikawan Prancis pada tahun 1812. Definisi ini digunakannya untuk merepresentasikan komposisi dari pemetaan-pemetaan linear yang dinyatakan dalam bentuk matriks. Perkalian matriks selanjutnya menjadi konsep dasar dalam aljabar linear, dan memiliki banyak penerapan di berbagai bidang matematika, matematika terapan, statistika, fisika, ekonomi, dan teknik. Menghitung hasil perkalian matriks adalah operasi yang penting dalam semua penerapan komputasi dari bidang allabar linear. (in)
  • 행렬 곱셈(matrix multiplication)은 두 개의 행렬에서 한 개의 행렬을 만들어내는 이항연산이다. 이 때 첫째 행렬의 열 개수와 둘째 행렬의 행 개수가 동일해야한다. 곱셈의 결과 새롭게 만들어진 행렬은 행렬곱(matrix product)라 하며, 첫째 행렬의 행 개수와 둘째 행렬의 열 개수를 가진다. 행렬 와 의 곱은 간단히 로 나타낸다. 벡터의 선형결합 또는 선형사상의 합성 등의 의미를 부여할 수 있다. 행렬 곱셈은 1812년 프랑스의 수학자 자크 비네가 선형 변환의 합성을 표현하고자 처음으로 사용하였다. 이후 행렬 곱셈은 선형대수학의 기초가 되어 수학, 통계학, 물리학, 경제학, 공학, 컴퓨터 프로그래밍 등의 분야에서 다양하게 응용되고 있다. (ko)
  • In matematica, e più precisamente in algebra lineare, la moltiplicazione di matrici è il prodotto righe per colonne tra due matrici, possibile sotto certe condizioni, che dà luogo ad un'altra matrice. Se una matrice rappresenta una applicazione lineare, il prodotto fra matrici è la traduzione della composizione di due applicazioni lineari. Quindi se due matrici 2 x 2 rappresentano ad esempio due rotazioni nel piano di angoli α e β, il loro prodotto è definito in modo tale da rappresentare una rotazione di angolo α + β. (it)
  • 数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法(ぎょうれつのじょうほう)は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、英: matrix product)と呼ばれるもので、A が n × m 行列で、B が m × p 行列ならば、それらの行列の積 AB が n × p 行列として与えられ、その成分は A の各行の m 個の成分がそれぞれ順番に B の各列の m 個の成分と掛け合わされる形で与えられる()。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において 1 を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。 (ja)
  • In de lineaire algebra is matrixvermenigvuldiging een bewerking tussen twee matrices die als resultaat een nieuwe matrix, aangeduid als het (matrix)product van die twee, oplevert. Vatten we de beide matrices op als lineaire afbeeldingen, dan is het matrixproduct de lineaire afbeelding die hoort bij de samenstelling van de beide lineaire afbeeldingen. (nl)
  • Em matemática, o produto de duas matrizes é definido somente quando o número de colunas da primeira matriz é igual ao número de linhas da segunda matriz. Se A é uma matriz m×n (A também pode ser denotada por ) e B é uma matriz n×p, então seu produto é uma matriz m×p definida como AB (ou por A · B). O elemento de cada entrada da matriz AB (o qual denotaremos por ) é dado pelo produto da i-ésima linha de A com a j-ésima coluna de B, ou seja, para cada par i e j com 1 ≤ i ≤ m e 1 ≤ j ≤ p. (pt)
  • Mnożenie macierzy – operacja mnożenia macierzy przez skalar lub inną macierz. Artykuł zawiera opis różnorodnych sposobów przeprowadzania ich mnożenia. (pl)
  • Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже. Матрицы и могут быть перемножены, если они совместимы в том смысле, что число столбцов матрицы равно числу строк . Матрицы обладают многими алгебраическими свойствами умножения, присущими обычным числам, за исключением коммутативности. Для квадратных матриц, помимо умножения, может быть введена операция возведения матрицы в степень и обратная матрица. Тогда как матрицы используются для описания, в частности, преобразований математических пространств (поворот, отражение, растяжение и другие), произведение матриц будет описывать . (ru)
  • Множе́ння ма́триць — це бінарна операція, яка використовуючи дві матриці, утворює нову матрицю, яка називається доб́утком ма́триць. Дійсні або комплексні числа множаться відповідно до правил елементарної арифметики. З іншого боку, матриці є масивами чисел, тому існують різні способи визначити добуток матриць. Таким чином, загалом термін «матричне множення» означає різні способи перемноження матриць. Ключовими особливостями будь-якого матричного множення є: кількість рядків і стовпців, в початкових матрицях, і правило, як елементи матриць утворюють нову матрицю. (uk)
  • 数学中,矩阵乘法(英語:matrix multiplication)是一种根据两个矩阵得到第三个矩阵的二元运算,第三个矩阵即前两者的乘积,称为矩阵积(英語:matrix product)。设是的矩阵,是的矩阵,则它们的矩阵积是的矩阵。中每一行的个元素都与中对应列的个元素对应相乘,这些乘积的和就是中的一个元素。 矩阵可以用来表示线性映射,矩阵积则可以用来表示线性映射的复合。因此,矩阵乘法是线性代数的基础工具,不仅在数学中有大量应用,在应用数学、物理学、工程学等领域也有广泛使用。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 125280 (xsd:integer)
dbo:wikiPageLength
  • 37951 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123707602 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • في الرياضيات، ضرب المصفوفات (بالإنجليزية: Matrix multiplication)‏ هي عملية ثنائية تأخذ مصفوفتين اثنتين مدخلا لها وتعطي مصفوفة ثالثة. عناصر هذين المصفوفتين ينتمين إلى حقل، أو بصفة عامة إلى حلقة أو حتى إلى . (ar)
  • En matemàtiques, la multiplicació o producte de matrius és l'operació de multiplicació efectuada entre dues matrius, o bé entre una matriu i un escalar. Igual que la multiplicació aritmètica, la seva definició és instrumental, és a dir, ve donada per un algorisme capaç de resoldre-la, no obstant això, la multiplicació en aquest context es diferencia de la usual, principalment perquè no compleix amb la propietat de commutativitat. (ca)
  • Násobení matic nebo též maticové násobení je v matematice zobecnění násobení čísel na matice. Formálně se dá definovat jako binární operace nad množinou matic. Využívá se v matematice, fyzice a jejich aplikacích pro popis skládání lineárních zobrazení. Speciálním případem násobení matic je násobení vektoru maticí – jde vlastně o maticové násobení matice o rozměrech n × 1 (sloupcový vektor) zleva maticí o rozměrech m × n, které můžeme interpretovat jako aplikaci lineárního zobrazení reprezentovaného na vektor. (cs)
  • Ĉi tiu artikolo donas priskribojn de la diversaj vojoj por multipliki matricojn. (eo)
  • En matemáticas, la multiplicación o producto de matrices es la operación de composición efectuada entre dos matrices, o bien la multiplicación entre una matriz y un escalar según unas determinadas reglas. Al igual que la multiplicación aritmética, su definición es instrumental, es decir, viene dada por un algoritmo capaz de efectuarla. El algoritmo para la multiplicación matricial es diferente del que resuelve la multiplicación de dos números. La diferencia principal es que la multiplicación de matrices no cumple con la propiedad de conmutatividad. (es)
  • Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». (fr)
  • 행렬 곱셈(matrix multiplication)은 두 개의 행렬에서 한 개의 행렬을 만들어내는 이항연산이다. 이 때 첫째 행렬의 열 개수와 둘째 행렬의 행 개수가 동일해야한다. 곱셈의 결과 새롭게 만들어진 행렬은 행렬곱(matrix product)라 하며, 첫째 행렬의 행 개수와 둘째 행렬의 열 개수를 가진다. 행렬 와 의 곱은 간단히 로 나타낸다. 벡터의 선형결합 또는 선형사상의 합성 등의 의미를 부여할 수 있다. 행렬 곱셈은 1812년 프랑스의 수학자 자크 비네가 선형 변환의 합성을 표현하고자 처음으로 사용하였다. 이후 행렬 곱셈은 선형대수학의 기초가 되어 수학, 통계학, 물리학, 경제학, 공학, 컴퓨터 프로그래밍 등의 분야에서 다양하게 응용되고 있다. (ko)
  • In matematica, e più precisamente in algebra lineare, la moltiplicazione di matrici è il prodotto righe per colonne tra due matrici, possibile sotto certe condizioni, che dà luogo ad un'altra matrice. Se una matrice rappresenta una applicazione lineare, il prodotto fra matrici è la traduzione della composizione di due applicazioni lineari. Quindi se due matrici 2 x 2 rappresentano ad esempio due rotazioni nel piano di angoli α e β, il loro prodotto è definito in modo tale da rappresentare una rotazione di angolo α + β. (it)
  • In de lineaire algebra is matrixvermenigvuldiging een bewerking tussen twee matrices die als resultaat een nieuwe matrix, aangeduid als het (matrix)product van die twee, oplevert. Vatten we de beide matrices op als lineaire afbeeldingen, dan is het matrixproduct de lineaire afbeelding die hoort bij de samenstelling van de beide lineaire afbeeldingen. (nl)
  • Em matemática, o produto de duas matrizes é definido somente quando o número de colunas da primeira matriz é igual ao número de linhas da segunda matriz. Se A é uma matriz m×n (A também pode ser denotada por ) e B é uma matriz n×p, então seu produto é uma matriz m×p definida como AB (ou por A · B). O elemento de cada entrada da matriz AB (o qual denotaremos por ) é dado pelo produto da i-ésima linha de A com a j-ésima coluna de B, ou seja, para cada par i e j com 1 ≤ i ≤ m e 1 ≤ j ≤ p. (pt)
  • Mnożenie macierzy – operacja mnożenia macierzy przez skalar lub inną macierz. Artykuł zawiera opis różnorodnych sposobów przeprowadzania ich mnożenia. (pl)
  • Множе́ння ма́триць — це бінарна операція, яка використовуючи дві матриці, утворює нову матрицю, яка називається доб́утком ма́триць. Дійсні або комплексні числа множаться відповідно до правил елементарної арифметики. З іншого боку, матриці є масивами чисел, тому існують різні способи визначити добуток матриць. Таким чином, загалом термін «матричне множення» означає різні способи перемноження матриць. Ключовими особливостями будь-якого матричного множення є: кількість рядків і стовпців, в початкових матрицях, і правило, як елементи матриць утворюють нову матрицю. (uk)
  • 数学中,矩阵乘法(英語:matrix multiplication)是一种根据两个矩阵得到第三个矩阵的二元运算,第三个矩阵即前两者的乘积,称为矩阵积(英語:matrix product)。设是的矩阵,是的矩阵,则它们的矩阵积是的矩阵。中每一行的个元素都与中对应列的个元素对应相乘,这些乘积的和就是中的一个元素。 矩阵可以用来表示线性映射,矩阵积则可以用来表示线性映射的复合。因此,矩阵乘法是线性代数的基础工具,不仅在数学中有大量应用,在应用数学、物理学、工程学等领域也有广泛使用。 (zh)
  • Die Matrizenmultiplikation oder Matrixmultiplikation ist in der Mathematik eine multiplikative Verknüpfung von Matrizen. Um zwei Matrizen miteinander multiplizieren zu können, muss die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmen. Das Ergebnis einer Matrizenmultiplikation wird dann Matrizenprodukt, Matrixprodukt oder Produktmatrix genannt. Das Matrizenprodukt ist wieder eine Matrix, deren Einträge durch komponentenweise Multiplikation und Summation der Einträge der entsprechenden Zeile der ersten Matrix mit der entsprechenden Spalte der zweiten Matrix ermittelt werden. (de)
  • In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. (en)
  • Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Matriks hasil perkalian keduanya, akan memiliki baris sebanyak baris matriks pertama, dan kolom sebanyak kolom matriks kedua. Perkalian matriks A dan B dinyatakan sebagai AB. (in)
  • 数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法(ぎょうれつのじょうほう)は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。 (ja)
  • Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже. Матрицы и могут быть перемножены, если они совместимы в том смысле, что число столбцов матрицы равно числу строк . Матрицы обладают многими алгебраическими свойствами умножения, присущими обычным числам, за исключением коммутативности. (ru)
rdfs:label
  • ضرب المصفوفات (ar)
  • Multiplicació de matrius (ca)
  • Násobení matic (cs)
  • Matrizenmultiplikation (de)
  • Πολλαπλασιασμός πινάκων (el)
  • Matrica multipliko (eo)
  • Multiplicación de matrices (es)
  • Perkalian matriks (in)
  • Produit matriciel (fr)
  • Moltiplicazione di matrici (it)
  • Matrix multiplication (en)
  • 행렬 곱셈 (ko)
  • 行列の乗法 (ja)
  • Matrixvermenigvuldiging (nl)
  • Produto de matrizes (pt)
  • Mnożenie macierzy (pl)
  • Умножение матриц (ru)
  • Множення матриць (uk)
  • 矩陣乘法 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License