This HTML5 document contains 106 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n22https://postimg.cc/
dbpedia-slhttp://sl.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n4https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
n15https://ac.els-cdn.com/S0022314X09001723/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n26https://www.researchgate.net/publication/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbpedia-nlhttp://nl.dbpedia.org/resource/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Mertens_function
dbo:wikiPageWikiLink
dbr:Redheffer_matrix
Subject Item
dbr:Riemann_hypothesis
dbo:wikiPageWikiLink
dbr:Redheffer_matrix
Subject Item
dbr:List_of_named_matrices
dbo:wikiPageWikiLink
dbr:Redheffer_matrix
Subject Item
dbr:Logical_matrix
dbo:wikiPageWikiLink
dbr:Redheffer_matrix
Subject Item
dbr:Redheffer_matrix
rdf:type
yago:Abstraction100002137 yago:Array107939382 yago:Arrangement107938773 yago:WikicatMatrices yago:Group100031264 yago:Matrix108267640 dbo:AnatomicalStructure
rdfs:label
레드헤퍼 행렬 Redheffer-matrix Матрица Редхеффера Redheffer matrix Matrice di Redheffer
rdfs:comment
In algebra lineare con matrice di Redheffer si indica una matrice binaria il cui elemento è 1 se j=1 oppure i divide j (incluso il caso in cui i=1). Prende il nome dal matematico americano . Per esempio, la matrice di Redheffer 12x12 è la seguente: La matrice di Redheffer può essere definita per qualunque dimensione mxn, non necessariamente quadrata. Tuttavia, di solito si fa riferimento solo a matrici quadrate, indicando con matrice di Redheffer di ordine n la matrice di dimensione nxn. 수학에서 레드헤퍼 행렬(Redheffer matrix, Redheffer 1977)은 행렬이며, 가 인 경우이거나 가 로 나누어 떨어진다면 가 이다. 그렇지 않으면 이다. 레드헤퍼(Redheffer) 정사각행렬의 행렬식은 메르텐스 함수 에 의해 주어진다. 레드헤퍼행렬은 행렬이자 이진 행렬이다. In mathematics, a Redheffer matrix, often denoted as studied by , is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix. В математике матрица Редхеффера, изученная - это (0,1)-матрица, элементы aij которой равны 1, если i делит j или если j = 1, в остальных случаях aij = 0. In de wiskunde, is een Redheffer-matrix, bestudeerd door (1977), een (0,1)-matrix waarvan de elementen aij gelijk aan 1 zijn als i door j deelt of als j=1; anders geldt aij=0. De determinant van de n x n vierkante Redheffer-matrix wordt gegeven door de Mertens-functie M(n)
dct:subject
dbc:Number_theory dbc:Matrices
dbo:wikiPageID
22113019
dbo:wikiPageRevisionID
1114872929
dbo:wikiPageWikiLink
dbr:Cyclotomic_polynomials dbr:Dirichlet_convolution dbr:Ramanujan_sum dbr:Mobius_inversion dbr:Invertible_matrix dbr:Partition_function_(number_theory) dbr:Dirichlet_generating_function dbr:Dirichlet_inverse dbr:Moebius_inversion dbr:Orthogonal_polynomials dbr:Riemann_Hypothesis dbr:Euler–Mascheroni_constant dbr:Square_matrix dbr:Riemann_zeta_function dbc:Number_theory dbr:Q-Pochhammer_symbol dbr:Transpose dbr:Characteristic_polynomial dbr:Eigenspace dbr:Eigenvalue dbr:Arithmetic_function dbr:Eigenvector dbr:Determinant dbr:Pentagonal_number_theorem dbr:Diagonalizable dbr:Graph_theory dbr:Lambert_series dbr:Singular_matrix dbr:Mertens_function dbr:(0,1)_matrix dbr:Euler_phi_function dbr:Divisor_sum_identities dbr:Toeplitz_matrix dbr:Mobius_function dbr:Mobius_inversion_formula dbr:Prime_omega_function dbc:Matrices dbr:Arithmetic_functions dbr:Spectral_radius dbr:Anderson-Apostol_divisor_sums dbr:Dirichlet_series dbr:Generating_function_transformation dbr:Euler's_phi_function dbr:Redheffer_star_product dbr:Moebius_function dbr:Stirling_transform dbr:Spectrum dbr:Binomial_transform dbr:Jordan_normal_form
dbo:wikiPageExternalLink
n15:1-s2.0-S0022314X09001723-main.pdf%3F_tid=7ae089eb-b00a-4cd3-a6d0-59f6d625178a&acdnat=1544629359_9caf1dc5b5ea630462558327be101556 n22:bSdYFr5J n26:222820191
owl:sameAs
n4:3Z2Pz dbpedia-ko:레드헤퍼_행렬 freebase:m.05p196k dbpedia-ru:Матрица_Редхеффера wikidata:Q3851926 dbpedia-sl:Redhefferjeva_matrika dbpedia-nl:Redheffer-matrix yago-res:Redheffer_matrix dbpedia-it:Matrice_di_Redheffer
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cite_web dbt:Cite_journal dbt:MathWorld dbt:Matrix_classes dbt:Citation dbt:Harvtxt
dbp:title
Redheffer matrix
dbp:urlname
RedhefferMatrix
dbo:abstract
В математике матрица Редхеффера, изученная - это (0,1)-матрица, элементы aij которой равны 1, если i делит j или если j = 1, в остальных случаях aij = 0. In de wiskunde, is een Redheffer-matrix, bestudeerd door (1977), een (0,1)-matrix waarvan de elementen aij gelijk aan 1 zijn als i door j deelt of als j=1; anders geldt aij=0. De determinant van de n x n vierkante Redheffer-matrix wordt gegeven door de Mertens-functie M(n) In algebra lineare con matrice di Redheffer si indica una matrice binaria il cui elemento è 1 se j=1 oppure i divide j (incluso il caso in cui i=1). Prende il nome dal matematico americano . Per esempio, la matrice di Redheffer 12x12 è la seguente: La matrice di Redheffer può essere definita per qualunque dimensione mxn, non necessariamente quadrata. Tuttavia, di solito si fa riferimento solo a matrici quadrate, indicando con matrice di Redheffer di ordine n la matrice di dimensione nxn. 수학에서 레드헤퍼 행렬(Redheffer matrix, Redheffer 1977)은 행렬이며, 가 인 경우이거나 가 로 나누어 떨어진다면 가 이다. 그렇지 않으면 이다. 레드헤퍼(Redheffer) 정사각행렬의 행렬식은 메르텐스 함수 에 의해 주어진다. 레드헤퍼행렬은 행렬이자 이진 행렬이다. In mathematics, a Redheffer matrix, often denoted as studied by , is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix.
gold:hypernym
dbr:Matrix
prov:wasDerivedFrom
wikipedia-en:Redheffer_matrix?oldid=1114872929&ns=0
dbo:wikiPageLength
27998
foaf:isPrimaryTopicOf
wikipedia-en:Redheffer_matrix
Subject Item
dbr:Raymond_Redheffer
dbo:wikiPageWikiLink
dbr:Redheffer_matrix
Subject Item
wikipedia-en:Redheffer_matrix
foaf:primaryTopic
dbr:Redheffer_matrix