An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

unknown

Property Value
dbo:description
  • resultado aparentemente contradictorio acerca la existencia de conjuntos no numerables (es)
  • fakt logiki matematycznej i teorii mnogości (pl)
  • paradoxa matemàtica (ca)
  • une conséquence troublante du théorème de Löwenheim-Skolem, qu’une théorie des ensembles, si elle a un modèle, a un modèle dénombrable, bien que l’on puisse définir une formule qui exprime l’existence d’ensembles non dénombrables (fr)
  • the paradox that there are countable models of theories that assert the existence of uncountable sets (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageInterLanguageLink
dbo:wikiPageWikiLink
dbp:author
  • John von Neumann (en)
  • Abraham Fraenkel (en)
  • Thoralf Skolem (en)
dbp:authorLink
  • Ernst Zermelo (en)
  • Leopold Löwenheim (en)
  • Thoralf Skolem (en)
dbp:c
  • Investigations in the Foundations of Set Theory I (en)
  • On Possibilities in the Calculus of Relatives (en)
  • Some Remarks on Axiomatized Set Theory (en)
dbp:first
  • Ernst (en)
  • Leopold (en)
  • Thoralf (en)
dbp:in
  • van Heijenoort (en)
dbp:last
  • Löwenheim (en)
  • Skolem (en)
  • Zermelo (en)
dbp:origYear
  • 1908 (xsd:integer)
  • 1922 (xsd:integer)
dbp:others
  • Translated by Stefan Bauer-Mengelberg (en)
dbp:pages
  • 199 (xsd:integer)
  • 228 (xsd:integer)
  • 290 (xsd:integer)
dbp:source
  • An axiomatization of set theory (en)
  • Introduction to set theory (en)
  • Some remarks on axiomatized set theory (en)
dbp:text
  • I believed that it was so clear that axiomatization in terms of sets was not a satisfactory ultimate foundation of mathematics that mathematicians would, for the most part, not be very much concerned with it. But in recent times I have seen to my surprise that so many mathematicians think that these axioms of set theory provide the ideal foundation for mathematics; therefore it seemed to me that the time had come for a critique. (en)
  • Neither have the books yet been closed on the antinomy, nor has agreement on its significance and possible solution yet been reached. (en)
  • At present we can do no more than note that we have one more reason here to entertain reservations about set theory and that for the time being no way of rehabilitating this theory is known. (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1967 (xsd:integer)
dct:subject
gold:hypernym
rdfs:label
  • Skolem's paradox (en)
  • Paradoxa de Skolem (ca)
  • Skolem-Paradox (de)
  • Paradoxe de Skolem (fr)
  • Paradox van Skolem (nl)
  • Paradoks Skolema (pl)
  • Парадокс Скулема (ru)
  • Paradoxo de Skolem (pt)
  • 斯科伦悖论 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:defn of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International