An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges. Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83). Discovered by G.C. Shephard in 1952, he represented it as 3(24)3, with its symmetry, Coxeter called as 3[3]3, isomorphic to the binary tetrahedral group, order 24.

Property Value
dbo:abstract
  • In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges. Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83). Discovered by G.C. Shephard in 1952, he represented it as 3(24)3, with its symmetry, Coxeter called as 3[3]3, isomorphic to the binary tetrahedral group, order 24. (en)
  • 在幾何學中,莫比烏斯-坎特八邊形是一個複正多邊形,其位於複希爾伯特平面中由八個頂點和八個三元稜組成,是一個自身對偶的多邊形。考克斯特將其命名為莫比烏斯-坎特八邊形,用於共享結構,如。 這種形狀由於1952年發現,其將此形狀根據其對稱性以3(24)3表示,考克斯特將這種對稱性計為3[3]3,其與24階的同構。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 51430790 (xsd:integer)
dbo:wikiPageLength
  • 5177 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 893188362 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges. Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83). Discovered by G.C. Shephard in 1952, he represented it as 3(24)3, with its symmetry, Coxeter called as 3[3]3, isomorphic to the binary tetrahedral group, order 24. (en)
  • 在幾何學中,莫比烏斯-坎特八邊形是一個複正多邊形,其位於複希爾伯特平面中由八個頂點和八個三元稜組成,是一個自身對偶的多邊形。考克斯特將其命名為莫比烏斯-坎特八邊形,用於共享結構,如。 這種形狀由於1952年發現,其將此形狀根據其對稱性以3(24)3表示,考克斯特將這種對稱性計為3[3]3,其與24階的同構。 (zh)
rdfs:label
  • Möbius–Kantor polygon (en)
  • 莫比烏斯-坎特八邊形 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License