An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual. Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration or (94123), 9 points lying by threes on twelve lines, with four lines through each point. The Witting polytope, 3{3}3{3}3{3}3, contains the Hessian polyhedron as cells and vertex figures.

Property Value
dbo:abstract
  • In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual. Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration or (94123), 9 points lying by threes on twelve lines, with four lines through each point. Its complex reflection group is 3[3]3[3]3 or , order 648, also called a Hessian group. It has 27 copies of , order 24, at each vertex. It has 24 order-3 reflections. Its Coxeter number is 12, with degrees of the fundamental invariants 3, 6, and 12, which can be seen in projective symmetry of the polytopes. The Witting polytope, 3{3}3{3}3{3}3, contains the Hessian polyhedron as cells and vertex figures. It has a real representation as the 221 polytope, , in 6-dimensional space, sharing the same 27 vertices. The 216 edges in 221 can be seen as the 72 3{} edges represented as 3 simple edges. (en)
  • 在幾何學中,黑塞二十七面體(Hessian polyhedron)是一個複正多面體,其位於複希爾伯特空間中由27個莫比烏斯-坎特八邊形組成,共有27個面、72條三元邊和27個頂點,是一個自身對偶的多面體,其可以視為實數空間的四面體在複數空間中的類比。 由於這種形狀與黑塞排佈共享結構,即12條線上有9個點,每條線上有3個點,每個點上有4條線,因此考克斯特將這種形狀以路德维希·奥托·黑塞的名字命名。 黑塞二十七面體是一種位於複數空間的立體,其對應到實數空間同樣也有一種實數空間的代表,其為,考克斯特表示法計為,其在六維空間中與黑塞二十七面體共用其27個頂點,其216條邊可透過將三元邊3{}替換成3條簡單邊即可於221中被觀察到。 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 50955594 (xsd:integer)
dbo:wikiPageLength
  • 15525 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118255846 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 在幾何學中,黑塞二十七面體(Hessian polyhedron)是一個複正多面體,其位於複希爾伯特空間中由27個莫比烏斯-坎特八邊形組成,共有27個面、72條三元邊和27個頂點,是一個自身對偶的多面體,其可以視為實數空間的四面體在複數空間中的類比。 由於這種形狀與黑塞排佈共享結構,即12條線上有9個點,每條線上有3個點,每個點上有4條線,因此考克斯特將這種形狀以路德维希·奥托·黑塞的名字命名。 黑塞二十七面體是一種位於複數空間的立體,其對應到實數空間同樣也有一種實數空間的代表,其為,考克斯特表示法計為,其在六維空間中與黑塞二十七面體共用其27個頂點,其216條邊可透過將三元邊3{}替換成3條簡單邊即可於221中被觀察到。 (zh)
  • In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual. Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration or (94123), 9 points lying by threes on twelve lines, with four lines through each point. The Witting polytope, 3{3}3{3}3{3}3, contains the Hessian polyhedron as cells and vertex figures. (en)
rdfs:label
  • Hessian polyhedron (en)
  • 黑塞二十七面體 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License