An Entity of Type: PartialDifferentialEquation106670866, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics and physics, homogenization is a method of studying partial differential equations with rapidly oscillating coefficients, such as where is a very small parameter and is a 1-periodic coefficient:, . Frequently, inhomogeneous materials (such as composite materials) possess microstructure and therefore they are subjected to loads or forcings which vary on a length scale which is far bigger than the characteristic length scale of the microstructure. In this situation, one can often replace the equation above with an equation of the form from 1-periodic functions satisfying:

Property Value
dbo:abstract
  • In mathematics and physics, homogenization is a method of studying partial differential equations with rapidly oscillating coefficients, such as where is a very small parameter and is a 1-periodic coefficient:, . It turns out that the study of these equations is also of great importance in physics and engineering, since equations of this type govern the physics of inhomogeneous or heterogeneous materials. Of course, all matter is inhomogeneous at some scale, but frequently it is convenient to treat it as homogeneous. A good example is the continuum concept which is used in continuum mechanics. Under this assumption, materials such as fluids, solids, etc. can be treated as homogeneous materials and associated with these materials are material properties such as shear modulus, elastic moduli, etc. Frequently, inhomogeneous materials (such as composite materials) possess microstructure and therefore they are subjected to loads or forcings which vary on a length scale which is far bigger than the characteristic length scale of the microstructure. In this situation, one can often replace the equation above with an equation of the form where is a constant tensor coefficient and is known as the effective property associated with the material in question. It can be explicitly computed as from 1-periodic functions satisfying: This process of replacing an equation with a highly oscillatory coefficient with one with a homogeneous (uniform) coefficient is known as homogenization. This subject is inextricably linked with the subject of micromechanics for this very reason. In homogenization one equation is replaced by another if for small enough , provided in some appropriate norm as . As a result of the above, homogenization can therefore be viewed as an extension of the continuum concept to materials which possess microstructure. The analogue of the differential element in the continuum concept (which contains enough atom, or molecular structure to be representative of that material), is known as the "Representative Volume Element" in homogenization and micromechanics. This element contains enough statistical information about the inhomogeneous medium in order to be representative of the material. Therefore averaging over this element gives an effective property such as above. Classical results of homogenization theory were obtained for media with periodic microstructure modeled by partial differential equations with periodic coefficients. These results were later generalized to spatially homogeneous random media modeled by differential equations with random coefficients which statistical properties are the same at every point in space. In practice, many applications require a more general way of modeling that is neither periodic nor statistically homogeneous. For this end the methods of the homogenization theory have been extended to partial differential equations, which coefficients are neither periodic nor statistically homogeneous (so-called arbitrarily rough coefficients). (en)
  • Dans les mathématiques et la physique, l'homogénéisation est un champ scientifique qui s'est développé à partir des années 1970 et qui a pour objet l'étude de systèmes multi-échelles. Plus précisément, l'homogénéisation s'attache à l'étude d'équations aux dérivées partielles dont un terme oscille fortement. Ces oscillations sont généralement liées à l'étude de milieux présentant des hétérogénéités à l'échelle microscopique (par exemple, des matériaux composites). L'objet de la théorie de l'homogénéisation est de proposer une équation « effective » (ou « homogénéisée ») généralement plus simple, qui décrive le comportement de la solution de l'équation considérée dans la limite où la petite échelle tend vers 0. Un des buts de cette théorie est de simplifier ainsi la simulation numérique de systèmes physiques complexes faisant intervenir plusieurs échelles. (fr)
dbo:wikiPageID
  • 23852047 (xsd:integer)
dbo:wikiPageLength
  • 9414 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117730291 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics and physics, homogenization is a method of studying partial differential equations with rapidly oscillating coefficients, such as where is a very small parameter and is a 1-periodic coefficient:, . Frequently, inhomogeneous materials (such as composite materials) possess microstructure and therefore they are subjected to loads or forcings which vary on a length scale which is far bigger than the characteristic length scale of the microstructure. In this situation, one can often replace the equation above with an equation of the form from 1-periodic functions satisfying: (en)
  • Dans les mathématiques et la physique, l'homogénéisation est un champ scientifique qui s'est développé à partir des années 1970 et qui a pour objet l'étude de systèmes multi-échelles. Plus précisément, l'homogénéisation s'attache à l'étude d'équations aux dérivées partielles dont un terme oscille fortement. Ces oscillations sont généralement liées à l'étude de milieux présentant des hétérogénéités à l'échelle microscopique (par exemple, des matériaux composites). L'objet de la théorie de l'homogénéisation est de proposer une équation « effective » (ou « homogénéisée ») généralement plus simple, qui décrive le comportement de la solution de l'équation considérée dans la limite où la petite échelle tend vers 0. Un des buts de cette théorie est de simplifier ainsi la simulation numérique de s (fr)
rdfs:label
  • Asymptotic homogenization (en)
  • Homogénéisation (fr)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:field of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License