An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical physics, two-dimensional Yang–Mills theory is the special case of Yang–Mills theory in which the dimension of spacetime is taken to be two. This special case allows for a rigorously defined Yang–Mills measure, meaning that the (Euclidean) path integral can be interpreted as a measure on the set of connections modulo gauge transformations. This situation contrasts with the four-dimensional case, where a rigorous construction of the theory as a measure is currently unknown.

Property Value
dbo:abstract
  • In mathematical physics, two-dimensional Yang–Mills theory is the special case of Yang–Mills theory in which the dimension of spacetime is taken to be two. This special case allows for a rigorously defined Yang–Mills measure, meaning that the (Euclidean) path integral can be interpreted as a measure on the set of connections modulo gauge transformations. This situation contrasts with the four-dimensional case, where a rigorous construction of the theory as a measure is currently unknown. An aspect of the subject of particular interest is the large-N limit, in which the structure group is taken to be the unitary group and then the tends to infinity limit is taken. The large-N limit of two-dimensional Yang–Mills theory has connections to string theory. (en)
dbo:wikiPageID
  • 66319632 (xsd:integer)
dbo:wikiPageLength
  • 33825 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117890993 (xsd:integer)
dbo:wikiPageWikiLink
dbp:align
  • center (en)
dbp:source
  • ' (en)
dbp:width
  • 50.0
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematical physics, two-dimensional Yang–Mills theory is the special case of Yang–Mills theory in which the dimension of spacetime is taken to be two. This special case allows for a rigorously defined Yang–Mills measure, meaning that the (Euclidean) path integral can be interpreted as a measure on the set of connections modulo gauge transformations. This situation contrasts with the four-dimensional case, where a rigorous construction of the theory as a measure is currently unknown. (en)
rdfs:label
  • Two-dimensional Yang–Mills theory (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License