About: Logistic map

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Simple polynomial map exhibiting chaotic behavior

Property Value
dbo:description
  • mapa polinomial simples exibindo comportamento caótico (pt)
  • カオス的振る舞いを示す単純な2次式写像 (ja)
  • Simple polynomial map exhibiting chaotic behavior (en)
  • mathematisches demographisches Modell (de)
  • полиномиальное отображение (ru)
  • suite récurrente découlant du modèle de croissance limitée de Verhulst (fr)
  • یک مدل ساده ریاضی است که غالبا برای توصیف رشد جمعیت های زیستی استفاده می شود (fa)
  • 혼돈적 움직임을 보이는 2차식 사상 (ko)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:align
  • center (en)
dbp:caption
  • Graph of when r is slightly less than 3. The graph is not tangent except at the fixed points, and there are no 3-periodic points. (en)
  • The relationship between and when r = 3. The tangent slope at the fixed point is exactly 1, and a period doubling bifurcation occurs. (en)
  • When a is exactly 3, the graph touches the diagonal at exactly three points, resulting in three periodic points. (en)
  • The relationship between and when r = 2.7, before the period doubling bifurcation occurs. The orbit converges to a fixed point . (en)
  • Orbit diagram of the logistic map from r = 3.55 to r = 4 (en)
  • Fixed point Example of monotonically decreasing convergence to (en)
  • When a is slightly greater than 3, the graph passes the diagonal and splits into stable and unstable 3-periodic points. (en)
  • Chaotic orbits of the logistic map when r = 3.82. The orange squares are orbits starting from , and the blue-green circles are orbits starting from . (en)
  • Relationship between and when . Before the period doubling bifurcation occurs. The orbit converges to the fixed point . (en)
  • Relationship between and when . The fixed point becomes unstable, splitting into a periodic-2 stable cycle. (en)
  • Magnification of the chaotic region of the map (en)
  • Orbit diagram for parameter r from −2 to 4. The orbit diverges when the parameter a goes beyond this range, both on the negative and positive sides. (en)
  • The trajectory starting from x 0 = 0.1234 and ˆx The difference in orbits starting from grows exponentially. The vertical axis is ,shown on a logarithmic scale. (en)
  • Time series when r = 3.8282 (en)
  • Time series when r = 3.828327 (en)
  • When , there are infinitely many intersections, and we have arrived at chaos via the period-doubling route. (en)
  • Spider diagram of the logistic map with parameter r = 4 and time series up to n = 500 for the initial value = 0.3. (en)
  • When , there are three intersection points, with the middle one unstable, and the two others stable. (en)
  • When , there are three intersection points, with the middle one unstable, and the two others having slope exactly , indicating that it is about to undergo another period-doubling. (en)
  • Stable regions within the chaotic region, where a tangent bifurcation occurs at the boundary between the chaotic and periodic attractor, giving intermittent trajectories as described in the Pomeau–Manneville scenario (en)
  • Fixed point Example of monotonically increasing convergence to (en)
  • Band structure. Because the spacing rapidly decreases, it is not possible to show more than eight bands. The top and bottom lines, which contain the orbitals, are within the range of equation . (en)
  • When , we have a single intersection, with slope exactly , indicating that it is about to undergo a period-doubling. (en)
  • The relationship between and when r = 3.3. becomes unstable and the orbit converges to the periodic points and . (en)
  • Relationship between and when . The tangent slope at the fixed point . is exactly 1, and a period doubling bifurcation occurs. (en)
dbp:content
dbp:date
  • May 2025 (en)
dbp:direction
  • horizontal (en)
dbp:footer
  • Spider diagram and time series for a = 3.3. The orbit is attracted to a stable 2-periodic point. (en)
dbp:footnote
  • The intermittency that occurs just before The part where the three almost identical values continue periodically is a laminar, and the part where chaotic irregular changes occur is a burst. (en)
dbp:image
  • ロジスティック写像、安定2周期軌道、時系列.png (en)
  • ロジスティック写像3回反復グラフの接線分岐の様子 .png (en)
  • Logistic iterates 3.4.svg (en)
  • Logistic iterates r=3.45.svg (en)
  • Logistic iterates with r=3.56994567.svg (en)
  • Logistic map cobweb plot a=1.2.png (en)
  • Logistic map cobweb plot a=1.8.png (en)
  • Logistic map iterates, r=3.0.svg (en)
  • Logistic map time evolution a=3.8282.png (en)
  • Logistic map time evolution a=3.828327.png (en)
  • Subsection Bifurcation Diagram Logistic Map.png (en)
  • パラメータ3.82のロジスティック写像におけるズレの進展.png (en)
  • ロジスティック写像2回反復グラフの周期倍化分岐の様(a = 2.7).png (en)
  • ロジスティック写像2回反復グラフの周期倍化分岐の様(a = 3).png (en)
  • Logistic map bifurcation diagram magnifications.png (en)
  • ロジスティック写像、安定2周期軌道、クモの巣図.png (en)
  • ロジスティック写像2回反復グラフの周期倍化分岐の様(a = 3.3).png (en)
  • パラメータ3.82のロジスティック写像における微差の初期値から出発する2つの軌道.png (en)
dbp:perrow
  • 2 (xsd:integer)
dbp:reason
  • There is obviously text missing here (en)
dbp:totalWidth
  • 590 (xsd:integer)
  • 620 (xsd:integer)
  • 900 (xsd:integer)
dbp:width
  • 620 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:label
  • Logistic map (en)
  • متتالية لوجستية (ar)
  • Mapa logístic (ca)
  • Logistische Gleichung (de)
  • Aplicación logística (es)
  • Suite logistique (fr)
  • Mappa logistica (it)
  • ロジスティック写像 (ja)
  • 로지스틱 사상 (ko)
  • Mapa logístico (pt)
  • Odwzorowanie logistyczne (pl)
  • Логистическое отображение (ru)
  • Логістичне відображення (uk)
  • 逻辑斯谛映射 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International