An Entity of Type: Magnitude105090441, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Fibonacci numbers are a sequence of integers, starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs. The numbers have also been used in the creation of music, visual art, and architecture.

Property Value
dbo:abstract
  • The Fibonacci numbers are a sequence of integers, starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs. The numbers have also been used in the creation of music, visual art, and architecture. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8009218 (xsd:integer)
dbo:wikiPageLength
  • 21910 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123144224 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The Fibonacci numbers are a sequence of integers, starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs. The numbers have also been used in the creation of music, visual art, and architecture. (en)
rdfs:label
  • Fibonacci numbers in popular culture (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License