About: Functional completeness     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }, consisting of binary conjunction and negation. Each of the singleton sets { NAND } and { NOR } is functionally complete. A gate or set of gates which is functionally complete can also be called a universal gate / gates. In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate.

AttributesValues
rdfs:label
  • Functional completeness
  • Completitud funcional
  • Completude funcional
  • System funkcjonalnie pełny
  • Функциональная полнота
  • Функціональна повнота
  • 自足算子
rdfs:comment
  • En lógica, un conjunto funcionalmente completo de conectivas lógicas u operadores booleanos es aquel que puede ser usado para expresar todas las tablas de verdad posibles combinando sus elementos en expresiones booleanas. Un conjunto bastante conocido de conectivas es {AND,NOT}, que consisten en la conjunción y la negación lógica. También existen conjuntos funcionalmente completos formados por un único operador booleano, como puede ser el caso de {NAND} y {NOR}. En el contexto de la lógica proposicional, los conjuntos de conectivas funcionalmente completos también son llamados suficientes.
  • Em lógica, um grupo de conectivos ou operadores Booleanos tem a propriedade da completude funcional se todos outros conectivos possíveis podem ser definidos em função dele. Do ponto de vista da eletrônica digital, completude funcional significa que cada porta lógica possível pode ser tratada como uma rede de portas dos tipos prescritos pelo conjunto. Em particular, todas as portas lógicas podem ser montadas a partir de apenas NANDs e NOR.
  • 自足算子或自足连结词是在一特定类的算子中只靠自身就能生成所有这些算子的算子。在逻辑中,它是足够生成所有布尔值函数的一个逻辑算子,,这里的 是一个任意集合而 是一个通用的 2-元素集合,典型为 ,特别是生成所有的有限布尔函数,。
  • In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }, consisting of binary conjunction and negation. Each of the singleton sets { NAND } and { NOR } is functionally complete. A gate or set of gates which is functionally complete can also be called a universal gate / gates. In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate.
  • Функциональная полнота множества логических операций или булевых функций — это возможность выразить все возможные значения таблиц истинности с помощью формул из элементов этого множества. Математическая логика обычно использует такой набор операций: конъюнкция , дизъюнкция , отрицание , импликация и эквиваленция . Это множество операций является функционально полным. Но оно не является минимальной функционально полной системой, поскольку: Таким образом также является функционально полной системой. Но также может быть выражено (в соответствии с законом де Моргана) как:
  • Функціональна повнота множини логічних операцій чи булевих функцій — це можливість подати всі можливі значення таблиць істинності за допомогою формул із елементів цієї множини. У логіці зазвичай застосовують такий набір операцій: кон'юнкція , диз'юнкція , заперечення , імплікація та еквівалентність . Ця множина операцій є функціонально повною. Але вона не є мінімальною функціонально повною системою, оскільки: Отже також є функціонально повною системою. Але також може бути виражене (за законом де Моргана) як: також може бути визначено через подібним чином.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En lógica, un conjunto funcionalmente completo de conectivas lógicas u operadores booleanos es aquel que puede ser usado para expresar todas las tablas de verdad posibles combinando sus elementos en expresiones booleanas. Un conjunto bastante conocido de conectivas es {AND,NOT}, que consisten en la conjunción y la negación lógica. También existen conjuntos funcionalmente completos formados por un único operador booleano, como puede ser el caso de {NAND} y {NOR}. En el contexto de la lógica proposicional, los conjuntos de conectivas funcionalmente completos también son llamados suficientes.
  • In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }, consisting of binary conjunction and negation. Each of the singleton sets { NAND } and { NOR } is functionally complete. A gate or set of gates which is functionally complete can also be called a universal gate / gates. A functionally complete set of gates may utilise or generate 'garbage bits' as part of its computation which are either not part of the input or not part of the output to the system. In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate. From the point of view of digital electronics, functional completeness means that every possible logic gate can be realized as a network of gates of the types prescribed by the set. In particular, all logic gates can be assembled from either only binary NAND gates, or only binary NOR gates.
  • Функциональная полнота множества логических операций или булевых функций — это возможность выразить все возможные значения таблиц истинности с помощью формул из элементов этого множества. Математическая логика обычно использует такой набор операций: конъюнкция , дизъюнкция , отрицание , импликация и эквиваленция . Это множество операций является функционально полным. Но оно не является минимальной функционально полной системой, поскольку: Таким образом также является функционально полной системой. Но также может быть выражено (в соответствии с законом де Моргана) как: также может быть определена через подобным образом. Также может быть выражена через следующим образом: Итак и одна из является минимальной функционально полной системой.
  • Em lógica, um grupo de conectivos ou operadores Booleanos tem a propriedade da completude funcional se todos outros conectivos possíveis podem ser definidos em função dele. Do ponto de vista da eletrônica digital, completude funcional significa que cada porta lógica possível pode ser tratada como uma rede de portas dos tipos prescritos pelo conjunto. Em particular, todas as portas lógicas podem ser montadas a partir de apenas NANDs e NOR.
  • Функціональна повнота множини логічних операцій чи булевих функцій — це можливість подати всі можливі значення таблиць істинності за допомогою формул із елементів цієї множини. У логіці зазвичай застосовують такий набір операцій: кон'юнкція , диз'юнкція , заперечення , імплікація та еквівалентність . Ця множина операцій є функціонально повною. Але вона не є мінімальною функціонально повною системою, оскільки: Отже також є функціонально повною системою. Але також може бути виражене (за законом де Моргана) як: також може бути визначено через подібним чином. Також може бути виражена через таким чином: Отже та одна з є мінімальною функціонально повною системою. У контексті логіки висловлювань, функціонально повний набір зв'язків також називається (неформально) адекватним[джерело?].
  • 自足算子或自足连结词是在一特定类的算子中只靠自身就能生成所有这些算子的算子。在逻辑中,它是足够生成所有布尔值函数的一个逻辑算子,,这里的 是一个任意集合而 是一个通用的 2-元素集合,典型为 ,特别是生成所有的有限布尔函数,。
prov:wasDerivedFrom
Faceted Search & Find service v1.17_git81 as of Jul 16 2021


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3322 as of Aug 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software