About: 5-manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2F5-manifold

In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non-simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups. Simply connected compact 5-manifolds were first classified by Stephen Smale and then in full generality by Dennis Barden, while another proof was later given by Aleksey V. Zhubr. This turns out to be easier than the 3- or 4-dimensional case: the 3-dimensional case is the Thurston geometrisation conjecture, and the 4-dimensional case was solved by Michael Freedman (1982) in the topological case, but is a very hard unsolved problem in the smooth case.

AttributesValues
rdf:type
rdfs:label
  • 5-manifold (en)
rdfs:comment
  • In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non-simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups. Simply connected compact 5-manifolds were first classified by Stephen Smale and then in full generality by Dennis Barden, while another proof was later given by Aleksey V. Zhubr. This turns out to be easier than the 3- or 4-dimensional case: the 3-dimensional case is the Thurston geometrisation conjecture, and the 4-dimensional case was solved by Michael Freedman (1982) in the topological case, but is a very hard unsolved problem in the smooth case. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non-simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups. Simply connected compact 5-manifolds were first classified by Stephen Smale and then in full generality by Dennis Barden, while another proof was later given by Aleksey V. Zhubr. This turns out to be easier than the 3- or 4-dimensional case: the 3-dimensional case is the Thurston geometrisation conjecture, and the 4-dimensional case was solved by Michael Freedman (1982) in the topological case, but is a very hard unsolved problem in the smooth case. In dimension 5, the smooth classification of simply connected manifolds is governed by classical algebraic topology. Namely, two simply connected, smooth 5-manifolds are diffeomorphic if and only if there exists an isomorphism of their second homology groups with integer coefficients, preserving the linking form and the second Stiefel–Whitney class. Moreover, any such isomorphism in second homology is induced by some diffeomorphism. It is undecidable if a given 5-manifold is homeomorphic to , the 5-sphere. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 55 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software