About: Homogeneous space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Group100031264, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHomogeneous_space

In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thu

AttributesValues
rdf:type
rdfs:label
  • Espai homogeni
  • Homogener Raum
  • Homogeneous space
  • Espace homogène
  • 等質空間
  • Spazio omogeneo
  • 동차 공간
  • Homogene ruimte
  • Przestrzeń jednorodna
  • Однородное пространство
  • Однорідний простір
  • 齐性空间
rdfs:comment
  • En géométrie, un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l'optique du programme d'Erlangen, le groupe représente des symétries préservant la géométrie de l'espace, et le caractère homogène se manifeste par l'indiscernabilité des points, et exprime une notion d'isotropie. Les éléments de l'espace forment une seule orbite selon G.
  • In geometria, uno spazio omogeneo è uno spazio i cui punti sono indistinguibili. La nozione si basa sul concetto di omogeneità, applicato in fisica ad esempio ad un corpo o all'intero universo. In matematica questa nozione è resa formalmente dalla presenza di un gruppo che agisce sullo spazio in modo transitivo.
  • 数学、とくにリー群、代数群、位相群の理論において、群 G の等質空間(とうしつくうかん、英: homogeneous space)は、G が推移的に作用するような空でない多様体あるいは位相空間 X である。G の元は X の対称変換 (symmetry) と呼ばれる。特別な場合は、問題の G が空間 X の自己同型群であるときである――ここで「自己同型群」は、微分同相群、あるいはの意味である。この場合 X が等質空間であるとは、直感的には X が、等長写像(リジッド幾何学)、微分同相写像(微分幾何学)、あるいは同相写像(位相幾何学)の意味において、各点で局所的に同じに見えるということである。著者によっては G の作用が忠実である(非単位元は非自明に作用する)ことを要求するが、本記事ではそうしない。したがって、X 上のある「幾何学的構造」を保ち X を単一の G-軌道にすると考えられるような G の X への群作用が存在する。
  • 기하학에서, 동차 공간(同次空間, 영어: homogeneous space)이란 그 자기 동형군이 추이적으로 작용하는 공간이다. 여기서 ‘공간’이란 다루는 수학적 구조에 따라 다른데, 위상 공간, 매끄러운 다양체, 또는 리만 다양체 등이 될 수 있다. 에를랑겐 프로그램의 관점에서, 동차 공간은 “모든 점이 평등한” 공간이다. 사실, 19세기 중반에 발표된 리만 기하학 이전의 모든 기하학적 공간은 동차 공간이었다. 예를 들어 유클리드 공간, 아핀 공간, 사영 공간 등은 전부 각자의 에 대해 동차 공간이다. 쌍곡 공간을 비롯해 일정한 곡률을 갖는 비유클리드 기하학적 공간들도 마찬가지이다.
  • In de wiskunde, met name in de theorieën van de Lie-groepen, de algebraïsche groepen en de topologische groepen, is een homogene ruimte voor een groep G een niet-lege variëteit of een topologische ruimte X waarop G continu op een transitieve manier werkt door symmetrie . Een speciaal geval hiervan is wanneer de topologische groep, G, in kwestie de homeomorfismegroep van de ruimte, X, is. In dit geval is X homogeen, als X er intuïtief overal hetzelfde uitziet. Sommige auteurs benadrukken dat de actie van G effectief (dat wil zeggen "trouw") moet zijn. Er is dus een groepsbewerking van G op X die kan worden beschouwd als de "meetkundige structuur" op X te bewaren, en X "into" een enkelvoudige G-baan te maken.
  • Przestrzeń jednorodna – dla danej grupy niepusta rozmaitość lub przestrzeń topologiczna na której działa poprzez symetrie w sposób ciągły. Szczególnym przypadkiem jest, gdy rozważana grupa topologiczna jest przestrzeni Wówczas jest jednorodna, jeżeli intuicyjnie „wygląda wszędzie tak samo”. Niektórzy autorzy nalegają, by działanie było efektywne (tzn. wierne), choć w artykule nie zakłada się tego. Istnieje zatem działanie grupy na o którym można myśleć, że zachowuje pewną „strukturę geometryczną” na czyniąc z pojedynczą G-orbitę.
  • Однородное пространство — множество вместе с заданным на нём транзитивным действием некоторой группы .Элементы множества называются точками однородного пространства, группа — группой движений, или основной группой однородного пространства.
  • 在数学,特别是李群、代数群与拓扑群的理论中,关于群G的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间X,G可传递性作用在X上,G中的元素稱之為X的對稱。一个特例是群G就是空间X的自同構群,這裡自同構群可以是等矩同構群、微分同肧群或是同肧群。在這些例子中,如果直觉想成X于任何地方局部看起来一样,則X是齐性的。像是等矩同構(剛體幾何)、微分同肧(微分幾何)或是同肧(拓撲)。一些作者要求G的作用是有效的(或忠实),不过本文并不要求这样。从而X上存在可以想象为保持X上相同“几何结构”的一个群作用,使X成为一个单G-轨道。
  • Однорідний простір — множина разом з заданою на ній транзитивною дією деякої групи . Елементи множини M називаються точками однорідного простору, група — групою рухів, або основною групою однорідного простору.
  • En matemàtiques, i en particular en les teories de grups de Lie, grups algebraics i grups topològics, un espai homogeni per a un grup G és una varietat no buida o un espai topològic X sobre el qual G actua de forma transitiva. Hom diu que els elements de G són les simetries d'X. Un cas especial d'aquesta definició es té quan el grup G en qüestió és el grup d'automorfismes de l'espai X (aquí, "grup d'automorfismes" pot significar grup d'isometries, grup de difeomorfismes o grup d'homeomorfismes). En tal cas, X és homogeni si, intuïtivament, X té el mateix aspecte localment en cada punt, ja sigui en el sentit d'una isometria (geometria rígida), d'un difeomorfisme (geometria diferencial) o d'un homeomorfisme (topologia). Alguns autors insisteixen en què l'acció de G ha de ser fidel (els eleme
  • Ein homogener Raum (seltener Kleinscher Raum oder Kleinsche Geometrie nach Felix Klein) ist in der Mathematik ein Raum mit einer transitiven Gruppenwirkung. Anschaulich bedeutet diese Homogenität, dass der Raum „in jedem Punkt gleich aussieht“. Beispielsweise sind zusammenhängende differenzierbare Mannigfaltigkeiten homogen, denn zu je zwei Punkten gibt es einen Diffeomorphismus, der auf abbildet. Falls die transitiv wirkende Gruppe endlich ist, gilt für die Mächtigkeit der Menge die Formel , wobei den Stabilisator eines (beliebigen) Elements bezeichnet.
  • In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thu
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software