This HTML5 document contains 76 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Metacyclic_group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:Z-group
rdf:type
dbo:Event yago:Abstraction100002137 yago:Relation100031921 yago:WikicatFiniteGroups yago:WikicatPropertiesOfGroups yago:Property113244109 yago:Possession100032613 yago:Group100031264
rdfs:label
Z-group
rdfs:comment
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: * in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. * in the study of infinite groups, a Z-group is a group which possesses a very general form of central series. * in the study of ordered groups, a Z-group or -group is a discretely ordered abelian group whose quotient over its minimal is divisible. Such groups are elementarily equivalent to the integers . Z-groups are an alternative presentation of Presburger arithmetic. * occasionally, (Z)-group is used to mean a Zassenhaus group, a special type of permutation group.
dcterms:subject
dbc:Finite_groups dbc:Properties_of_groups dbc:Infinite_group_theory
dbo:wikiPageID
15757039
dbo:wikiPageRevisionID
1114355963
dbo:wikiPageWikiLink
dbc:Infinite_group_theory dbr:Doubly_transitive_permutation_group dbr:Mathematics dbr:Central_series dbr:Generalized_quaternion_group dbr:Hypercentral_group dbr:Frobenius_group dbr:Permutation_group dbc:Finite_groups dbr:Group_(mathematics) dbr:Cyclic_group dbr:A-group dbr:Supersolvable_group dbr:Finite_group dbr:Sylow_subgroup dbr:Projective_special_linear_group dbr:Greatest_common_divisor dbr:Group_of_Lie_type dbr:Derived_subgroup dbr:Infinite_group dbr:Metacyclic_group dbr:Presburger_arithmetic dbr:Monomial_group dbr:Character_theory dbr:Convex_subgroup dbr:Transactions_of_the_American_Mathematical_Society dbr:Dihedral_group dbr:Upper_central_series dbr:P-group dbr:Hypocentral_group dbc:Properties_of_groups dbr:Springer-Verlag dbr:Algebra dbr:American_Journal_of_Mathematics dbr:Cambridge_University_Press dbr:Abelian_group dbr:Elementary_equivalence dbr:Group_theory dbr:Linearly_ordered_group dbr:Zassenhaus_group
owl:sameAs
freebase:m.03nsgwc yago-res:Z-group n12:4xj5v wikidata:Q8062835
dbp:wikiPageUsesTemplate
dbt:Harv dbt:Main dbt:Citation dbt:MR
dbo:abstract
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: * in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. * in the study of infinite groups, a Z-group is a group which possesses a very general form of central series. * in the study of ordered groups, a Z-group or -group is a discretely ordered abelian group whose quotient over its minimal is divisible. Such groups are elementarily equivalent to the integers . Z-groups are an alternative presentation of Presburger arithmetic. * occasionally, (Z)-group is used to mean a Zassenhaus group, a special type of permutation group.
gold:hypernym
dbr:Groups
prov:wasDerivedFrom
wikipedia-en:Z-group?oldid=1114355963&ns=0
dbo:wikiPageLength
7282
foaf:isPrimaryTopicOf
wikipedia-en:Z-group
Subject Item
dbr:Greeks
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:Complemented_group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:Frobenius_group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:A-group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:Solvable_group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
dbr:Supersolvable_group
dbo:wikiPageWikiLink
dbr:Z-group
Subject Item
wikipedia-en:Z-group
foaf:primaryTopic
dbr:Z-group