dbo:abstract
|
- Grupový okruh je termín z matematiky, přesněji z abstraktní algebry, kterým se označuje okruh a zároveň modul vytvořený daným způsobem z libovolné dané grupy a okruhu. (cs)
- In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. (en)
- En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité. Une telle structure est une algèbre semi-simple, elle dispose de toute une théorie dont le théorème d'Artin-Wedderburn est le pilier. Cette approche apporte un nouvel angle d'analyse pour la représentation des groupes. Elle permet d'établir par exemple, le théorème de réciprocité de Frobenius, celui d'Artin ou par exemple le (en). (fr)
- 추상대수학에서 군환(群環, 영어: group ring 그룹링[*])은 군의 원소로 생성되는 자유 가군이다. 가군과 환의 구조를 가진다. (ko)
- 代数学において、与えられた群および環に対する群環(ぐんかん、英: group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群をとする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、英: group algebra; 群代数)(あるいは短く群環)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。 (ja)
- Групове кільце — кільце, що є водночас вільним модулем, яке можна побудувати за даним кільцем та даною групою. Неформально кажучи, групове кільце — це вільний модуль над кільцем , базис якого перебуває в бієктивній відповідності до елементів групи , множення базисних елементів визначається як множення елементів групи, а на інші елементи множення «поширюється за лінійністю». Апарат групових кілець особливо корисний у теорії представлень груп. (uk)
- 在抽象代數中,群環是從一個群 及交換環 構造出的環,通常記為 或 。其定義為: (換言之,這是由基底 張出的自由 -模) 其上的 -線性乘法運算由 給出。 對 -模的加法與上述乘法形成一個 -代數。乘法單位元素為 。 最常用的是 或 的群環。對於後者, 成為 的表示:;若 為有限群,則稱此表示為。正則表示與有限群的表示理論有密切的聯繫。 對於無窮階的群 ,迄今對群環的結構仍所知甚少。對於局部緊拓撲群,通常採用 或 對摺積構成的代數,較有利於研究群的拓撲性質及其表示。 (zh)
- Групповое кольцо — это кольцо, являющееся в то же время свободным модулем, которое можно построить по данному кольцу и данной группе. Неформально говоря, групповое кольцо — это свободный модуль над кольцом базис которого находится в биективном соответствии с элементами группы умножение базисных элементов определяется как умножение элементов группы, а на остальные элементы умножение «распространяется по линейности». Аппарат групповых колец особенно полезен в теории представлений групп. (ru)
|
rdfs:comment
|
- Grupový okruh je termín z matematiky, přesněji z abstraktní algebry, kterým se označuje okruh a zároveň modul vytvořený daným způsobem z libovolné dané grupy a okruhu. (cs)
- 추상대수학에서 군환(群環, 영어: group ring 그룹링[*])은 군의 원소로 생성되는 자유 가군이다. 가군과 환의 구조를 가진다. (ko)
- 代数学において、与えられた群および環に対する群環(ぐんかん、英: group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群をとする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、英: group algebra; 群代数)(あるいは短く群環)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。 (ja)
- Групове кільце — кільце, що є водночас вільним модулем, яке можна побудувати за даним кільцем та даною групою. Неформально кажучи, групове кільце — це вільний модуль над кільцем , базис якого перебуває в бієктивній відповідності до елементів групи , множення базисних елементів визначається як множення елементів групи, а на інші елементи множення «поширюється за лінійністю». Апарат групових кілець особливо корисний у теорії представлень груп. (uk)
- 在抽象代數中,群環是從一個群 及交換環 構造出的環,通常記為 或 。其定義為: (換言之,這是由基底 張出的自由 -模) 其上的 -線性乘法運算由 給出。 對 -模的加法與上述乘法形成一個 -代數。乘法單位元素為 。 最常用的是 或 的群環。對於後者, 成為 的表示:;若 為有限群,則稱此表示為。正則表示與有限群的表示理論有密切的聯繫。 對於無窮階的群 ,迄今對群環的結構仍所知甚少。對於局部緊拓撲群,通常採用 或 對摺積構成的代數,較有利於研究群的拓撲性質及其表示。 (zh)
- Групповое кольцо — это кольцо, являющееся в то же время свободным модулем, которое можно построить по данному кольцу и данной группе. Неформально говоря, групповое кольцо — это свободный модуль над кольцом базис которого находится в биективном соответствии с элементами группы умножение базисных элементов определяется как умножение элементов группы, а на остальные элементы умножение «распространяется по линейности». Аппарат групповых колец особенно полезен в теории представлений групп. (ru)
- In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. (en)
- En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité. Une telle structure est une algèbre semi-simple, elle dispose de toute une théorie dont le théorème d'Artin-Wedderburn est le pilier. (fr)
|